In this chapter we study random walks on a finitely generated group G which has a free action on a Z(n)-tree. We show that if G is nonabelian and acts minimally, freely and without inversions on a locally finite Zn-tree Gamma with the set of open ends Ends(Gamma), then for every nondegenerate probability measure mu on G there exists a unique mu-stationary probability measure v(mu) on Ends(F), and the space (Ends(Gamma), v(mu)) is a mu-boundary. Moreover, if mu has finite first moment with respect to the word metric on G (induced by a finite generating set), then the measure space (Ends(Gamma), v mu) is isomorphic to the Poisson Furstenberg boundary of (G,mu).

Язык оригиналаАнглийский
Название основной публикацииGROUPS, GRAPHS AND RANDOM WALKS
РедакторыT CeccheriniSilberstein, M Salvatori, E SavaHuss
ИздательCambridge University Press
Страницы355-390
Число страниц36
СостояниеОпубликовано - 2017
СобытиеConference on Groups, Graphs and Random Walks - Cortona, Италия
Продолжительность: 2 июн 20146 июн 2014

Серия публикаций

НазваниеLondon Mathematical Society Lecture Note Series
ИздательCAMBRIDGE UNIV PRESS
Том436
ISSN (печатное издание)0076-0552

конференция

конференцияConference on Groups, Graphs and Random Walks
Страна/TерриторияИталия
ГородCortona
Период2/06/146/06/14

ID: 39176928