Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study the Steklov spectral problem for the Laplace operator in a bounded domain Ω⊂Rd, d≥2, with a cusp such that the continuous spectrum of the problem is non-empty, and also in the family of bounded domains Ωε⊂Ω, ε>0, obtained from Ω by blunting the cusp at the distance of ε from the cusp tip. While the spectrum in the blunted domain Ωε consists for a fixed ε of an unbounded positive sequence {λj ε}j=1 ∞ of eigenvalues, we single out different types of behavior of some eigenvalues as ε→+0: in particular, stable, blinking, and gliding families of eigenvalues are found. We also describe a mechanism which transforms the family of the eigenvalue sequences into the continuous spectrum of the problem in Ω, when ε→+0.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 2774-2797 |
Число страниц | 24 |
Журнал | Journal of Differential Equations |
Том | 269 |
Номер выпуска | 4 |
DOI | |
Состояние | Опубликовано - 5 авг 2020 |
ID: 60873544