or an analog of a Blaschke product for a Hilbert space with Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with Nevanlinna–Pick kernel), it is proved that only finitely many elementary multipliers may have zeros on a fixed compact set. It is also proved that partial Blaschke products multiplied by an appropriate reproducing kernel converge in the Hilbert space. These abstract theorems are applied to the weighted Hardy spaces in the unit disk and to the Drury–Arveson spaces.
Язык оригиналаанглийский
Страницы (с-по)585-594
Число страниц10
ЖурналJournal of Mathematical Sciences
Том215
Номер выпуска5
Дата раннего онлайн-доступа30 апр 2016
СостояниеОпубликовано - июн 2016

ID: 9225211