Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Bit complexity of computing solutions for symmetric hyperbolic systems of PDEs with guaranteed precision. / Selivanova, Svetlana; Selivanov, Victor.
в: Computability, Том 10, № 2, 01.01.2021, стр. 123-140.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Bit complexity of computing solutions for symmetric hyperbolic systems of PDEs with guaranteed precision
AU - Selivanova, Svetlana
AU - Selivanov, Victor
PY - 2021/1/1
Y1 - 2021/1/1
N2 - We establish upper bounds on bit complexity of computing solution operators for symmetric hyperbolic systems of PDEs, combining symbolic and approximate algorithms to obtain the solutions with guaranteed prescribed precision. Restricting to algebraic real inputs allows us to use the classical ('discrete') bit complexity concept.
AB - We establish upper bounds on bit complexity of computing solution operators for symmetric hyperbolic systems of PDEs, combining symbolic and approximate algorithms to obtain the solutions with guaranteed prescribed precision. Restricting to algebraic real inputs allows us to use the classical ('discrete') bit complexity concept.
KW - algebraic real
KW - approximation
KW - bit complexity
KW - difference scheme
KW - guaranteed precision
KW - solution operator
KW - spectral decomposition
KW - symbolic computations
KW - Symmetric hyperbolic system
KW - symmetric matrix
UR - http://www.scopus.com/inward/record.url?scp=85104484353&partnerID=8YFLogxK
M3 - Article
AN - SCOPUS:85104484353
VL - 10
SP - 123
EP - 140
JO - Computability
JF - Computability
SN - 2211-3568
IS - 2
ER -
ID: 126991209