Standard

Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates. / Müller, J.-F.; Stavrakou, T.; Oomen, G.-M.; Opacka, B.; De Smedt, I.; Guenther, A.; Vigouroux, C.; Langerock, B.; Aquino, C.A.B.; Grutter, M.; Hannigan, J.; Hase, F.; Kivi, R.; Lutsch, E.; Mahieu, E.; Makarova, M.; Metzger, J.-M.; Morino, I.; Murata, I.; Nagahama, T.; Notholt, J.; Ortega, I.; Palm, M.; Röhling, A.; Stremme, W.; Strong, K.; Sussmann, R.; Té, Y.; Fried, A.

в: Atmospheric Chemistry and Physics, Том 24, № 4, 22.02.2024, стр. 2207-2237.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Müller, J-F, Stavrakou, T, Oomen, G-M, Opacka, B, De Smedt, I, Guenther, A, Vigouroux, C, Langerock, B, Aquino, CAB, Grutter, M, Hannigan, J, Hase, F, Kivi, R, Lutsch, E, Mahieu, E, Makarova, M, Metzger, J-M, Morino, I, Murata, I, Nagahama, T, Notholt, J, Ortega, I, Palm, M, Röhling, A, Stremme, W, Strong, K, Sussmann, R, Té, Y & Fried, A 2024, 'Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates', Atmospheric Chemistry and Physics, Том. 24, № 4, стр. 2207-2237. https://doi.org/10.5194/acp-24-2207-2024

APA

Müller, J-F., Stavrakou, T., Oomen, G-M., Opacka, B., De Smedt, I., Guenther, A., Vigouroux, C., Langerock, B., Aquino, C. A. B., Grutter, M., Hannigan, J., Hase, F., Kivi, R., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J-M., Morino, I., Murata, I., ... Fried, A. (2024). Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates. Atmospheric Chemistry and Physics, 24(4), 2207-2237. https://doi.org/10.5194/acp-24-2207-2024

Vancouver

Müller J-F, Stavrakou T, Oomen G-M, Opacka B, De Smedt I, Guenther A и пр. Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates. Atmospheric Chemistry and Physics. 2024 Февр. 22;24(4):2207-2237. https://doi.org/10.5194/acp-24-2207-2024

Author

Müller, J.-F. ; Stavrakou, T. ; Oomen, G.-M. ; Opacka, B. ; De Smedt, I. ; Guenther, A. ; Vigouroux, C. ; Langerock, B. ; Aquino, C.A.B. ; Grutter, M. ; Hannigan, J. ; Hase, F. ; Kivi, R. ; Lutsch, E. ; Mahieu, E. ; Makarova, M. ; Metzger, J.-M. ; Morino, I. ; Murata, I. ; Nagahama, T. ; Notholt, J. ; Ortega, I. ; Palm, M. ; Röhling, A. ; Stremme, W. ; Strong, K. ; Sussmann, R. ; Té, Y. ; Fried, A. / Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates. в: Atmospheric Chemistry and Physics. 2024 ; Том 24, № 4. стр. 2207-2237.

BibTeX

@article{1bfe627f887f4944913221ad9ec8ae6d,
title = "Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates",
abstract = "Spaceborne formaldehyde (HCHO) measurements constitute an excellent proxy for the sources of non-methane volatile organic compounds (NMVOCs). Past studies suggested substantial overestimations of NMVOC emissions in state-of-the-art inventories over major source regions. Here, the QA4ECV (Quality Assurance for Essential Climate Variables) retrieval of HCHO columns from OMI (Ozone Monitoring Instrument) is evaluated against (1) FTIR (Fourier-transform infrared) column observations at 26 stations worldwide and (2) aircraft in situ HCHO concentration measurements from campaigns conducted over the USA during 2012-2013. Both validation exercises show that OMI underestimates high columns and overestimates low columns. The linear regression of OMI and aircraft-based columns gives ωOMICombining double low line0.651ωairc+2.95×1015 molec.cm-2, with ωOMI and ωairc the OMI and aircraft-derived vertical columns, whereas the regression of OMI and FTIR data gives ωOMICombining double low line0.659ωFTIR+2.02×1015 molec.cm-2. Inverse modelling of NMVOC emissions with a global model based on OMI columns corrected for biases based on those relationships leads to much-improved agreement against FTIR data and HCHO concentrations from 11 aircraft campaigns. The optimized global isoprene emissions (ĝ1/4445Tgyr-1) are 25% higher than those obtained without bias correction. The optimized isoprene emissions bear both striking similarities and differences with recently published emissions based on spaceborne isoprene columns from the CrIS (Cross-track Infrared Sounder) sensor. Although the interannual variability of OMI HCHO columns is well understood over regions where biogenic emissions are dominant, and the HCHO trends over China and India clearly reflect anthropogenic emission changes, the observed HCHO decline over the southeastern USA remains imperfectly elucidated. {\textcopyright} Copyright:",
keywords = "airborne survey, atmospheric pollution, correction, formaldehyde, FTIR spectroscopy, volatile organic compound, United States",
author = "J.-F. M{\"u}ller and T. Stavrakou and G.-M. Oomen and B. Opacka and {De Smedt}, I. and A. Guenther and C. Vigouroux and B. Langerock and C.A.B. Aquino and M. Grutter and J. Hannigan and F. Hase and R. Kivi and E. Lutsch and E. Mahieu and M. Makarova and J.-M. Metzger and I. Morino and I. Murata and T. Nagahama and J. Notholt and I. Ortega and M. Palm and A. R{\"o}hling and W. Stremme and K. Strong and R. Sussmann and Y. T{\'e} and A. Fried",
note = "Export Date: 11 March 2024 Адрес для корреспонденции: M{\"u}ller, J.-F.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB)Belgium; эл. почта: jfm@aeronomie.be Сведения о финансировании: Horizon 2020 Framework Programme, H2020, 101004318 Сведения о финансировании: Seventh Framework Programme, FP7, 6007405 Сведения о финансировании: European Commission, EC Сведения о финансировании: European Space Agency, ESA, 4000130630 Сведения о финансировании: Bundesministerium f{\"u}r Bildung und Forschung, BMBF, 01LG1904A Сведения о финансировании: Belgian Federal Science Policy Office, BELSPO, B2/202/01/EQUATOR Сведения о финансировании: Nagoya University, NU Сведения о финансировании: Sorbonne Universit{\'e} Текст о финансировании 1: This research has been supported by the EQUATOR project of the BRAIN-be 2.0 program from the Belgian Science Policy Office (Belspo) (grant no. B2/202/01/EQUATOR), by the SEEDS project funded by the European Commission under the H2020 program (grant no. 101004318), by the ProDEx-12 project TROVA-E2 of the European Space Agency (grant no. 4000130630) and by the BMBF (German Ministry of Research and Education) in the project ROMIC-II, subproject TroStra (grant no. 01LG1904A). Текст о финансировании 2: The Paris site has received funding from Sorbonne Universit{\'e}, the French research center CNRS, the French space agency CNES and R{\'e}gion {\^I}le-de-France. FTIR operations of Rikubetsu and Tsukuba are supported in part by the GOSAT series project. The Rikubetsu NDACC site is funded by the joint research program of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. We thank the AWI Bremerhaven, Germany, and the Meteorological Service Suriname for logistical support and the senate of Bremen for logistical and financial support. We acknowledge the support of the station personnel at the AWIPEV research base in Ny-{\AA}lesund, Spitsbergen, and Cor Becker for support in Paramaribo, Suriname. Текст о финансировании 3: HCHO satellite data from OMI were produced in the scope of the European FP7 project QA4ECV (grant no. 6007405). We thank Dan Smale and the National Institute of Water and Atmospheric Research (NIWA) for the provision of the Lauder FTIR data, and we thank Nicholas Jones of the Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia, for provision of Wollongong FTIR data. Thanks to Thomas Hanisco and the NASA Goddard Space Flight Center (GSFC) for provision of ISAF data (SENEX). Emmanuel Mahieu is a senior research associate with the F.R.S. – FNRS. Пристатейные ссылки: Abbot, D. S., Palmer, P. I., Martin, R. V., Chance, K. V., Jacob, D. J., Guenther, A., Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space (2003) Geophys. Res. Lett, 30, p. 1886. , https://doi.org/10.1029/2003GL017336; Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models (2011) Atmos. Chem. Phys, 11, pp. 4039-4072. , https://doi.org/10.5194/acp-11-4039-2011; Andela, N., van der Werf, G., Recent trends in African fires driven by cropland expansion and El Ni{\~n}o to La Ni{\~n}a transition (2014) Nat. Clim. Chang, 4, pp. 791-795. , https://doi.org/10.1038/nclimate2313; Andreae, M. O., Emission of trace gases and aerosols from biomass burning-an updated assessment (2019) Atmos. Chem. Phys, 19, pp. 8523-8546. , https://doi.org/10.5194/acp-19-8523-2019; Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Copper, O. R., Young, P. J., Akiyoshi, H., Cox, R. A., Zeng, G., Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100 (2020) Elem. Sci. Anth, 8, pp. 1-53. , https://doi.org/10.1525/elementa.2020.034; Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., Guenther, A., Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation (2011) Atmos. Chem. Phys, 11, pp. 8037-8052. , https://doi.org/10.5194/acp-11-8037-2011; Atkinson, R., Atmospheric chemistry of VOCs and NOx (2000) Atmos. Environ, 34, pp. 2063-2101. , https://doi.org/10.1016/S1352-2310(99)00460-4; Barkley, M. P., Palmer, P. I., Ganzeveld, L., Arneth, A., Hagberg, D., Karl, T., Guenther, A., Yantosca, R., Can a {"}state of the art{"} chemistry transport model simulate Amazonian tropospheric chemistry? (2011) J. Geophys. Res, 116, p. D16302. , https://doi.org/10.1029/2011JD015893; Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., Carey, L. D., Ziegler, C., The Deep Convective Clouds and Chemistry (DC3) Field Campaign (2015) B. Am. Meteor. Soc, 96, pp. 1281-1309. , https://doi.org/10.1175/BAMS-D-13-00290.1; Bates, K. H., Jacob, D. J., A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol (2019) Atmos. Chem. Phys, 19, pp. 9613-9640. , https://doi.org/10.5194/acp-19-9613-2019; Bauwens, M., Stavrakou, T., M{\"u}ller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Guenther, A., Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations (2016) Atmos. Chem. Phys, 16, pp. 10133-10158. , https://doi.org/10.5194/acp-16-10133-2016; Bauwens, M., Stavrakou, T., M{\"u}ller, J.-F., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Giot, O., Guenther, A., Recent past (1979-2014) and future (2070-2099) isoprene fluxes over Europe simulated with the MEGAN-MOHYCAN model (2018) Biogeosciences, 15, pp. 3673-3690. , https://doi.org/10.5194/bg-15-3673-2018; Bauwens, M., Verreyken, B., Stavrakou, T., M{\"u}ller, J.-F., De Smedt, I., Spaceborne evidence for significant anthropogenic VOC trends in Asian cities over 2005-2019 (2022) Environ. Res. Lett, 17, p. 015008. , https://doi.org/10.1088/1748-9326/ac46eb; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Schultz, M., Global model of tropospheric chemistry with assimilated meteorology: Model description and evaluation (2001) J. Geophys. Res, 106, pp. 23073-23095. , https://doi.org/10.1029/2010JD014870; Boeke, N. L., Marshall, J. D., Alvarez, S., Chance, K. V., Fried, A., Kurosu, T. P., Rappengl{\"u}ck, B., Millet, D. B., Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model (2011) J. Geophys. Res, 116, p. D05303. , https://doi.org/10.1029/2010JD014870; Boersma, K. F., Eskes, H. J., Brinksma, E. J., Error analysis for tropospheric NO2 retrieval from space (2004) J. Geophys. Res, 109, p. D04311. , https://doi.org/10.1029/2003JD003962; Cazorla, M., Wolfe, G. M., Bailey, S. A., Swanson, A. K., Arkinson, H. L., Hanisco, T. F., A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere (2015) Atmos. Meas. Tech, 8, pp. 541-552. , https://doi.org/10.5194/amt-8-541-2015; Chameides, W. L., Lindsay, R. W., Richardson, J., Kiang, C. S., The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study (1988) Science, 241, pp. 1473-1475. , https://doi.org/10.1126/science.3420404; Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., Blake, D. R., Yuan, B., On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America (2019) Atmos. Chem. Phys, 19, pp. 9097-9123. , https://doi.org/10.5194/acp-19-9097-2019; Crawford, J. H., Pickering, K. E., DISCOVER-AQ: Advancing strategies for air quality observations in the next decade (2014) Environ. Manage, Air andWaste Management Association's Magazine for Environmental Managers, 4. , Pittsburgh, Pa, Air Waste Manage. Assoc; De Mazi{\`e}re, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Strahan, S. E., The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives (2018) Atmos. Chem. Phys, 18, pp. 4935-4964. , https://doi.org/10.5194/acp-18-4935-2018; De Smedt, I., M{\"u}ller, J.-F., Stavrakou, T., van der A, R., Eskes, H., Van Roozendael, M., Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors (2008) Atmos. Chem. Phys, 8, pp. 4947-4963. , https://doi.org/10.5194/acp-8-4947-2008; De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Van Roozendael, M., Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations (2015) Atmos. Chem. Phys, 15, pp. 12519-12545. , https://doi.org/10.5194/acp-15-12519-2015; De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Veefkind, P., Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project (2018) Atmos. Meas. Tech, 11, pp. 2395-2426. , https://doi.org/10.5194/amt-11-2395-2018; De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Van Roozendael, M., Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements (2021) Atmos. Chem. Phys, 21, pp. 12561-12593. , https://doi.org/10.5194/acp-21-12561-2021; Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X. R., Thornberry, T., Campbell, C., Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs (2004) Science, 304, pp. 722-725. , https://doi.org/10.1126/Science.1094392; Emmerson, K. M., Galbally, I. E., Guenther, A. B., Paton-Walsh, C., Guerette, E.-A., Cope, M. E., Keywood, M. D., Maleknia, S. D., Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia (2016) Atmos. Chem. Phys, 16, pp. 6997-7011. , https://doi.org/10.5194/acp-16-6997-2016; Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Saunois, M., Szopa, S., Cressot, C., Fried, A., The formaldehyde budget as seen by a globalscale multi-constraint and multi-species inversion system (2012) Atmos. Chem. Phys, 12, pp. 6699-6721. , https://doi.org/10.5194/acp-12-6699-2012; Franco, B., Mahieu, E., Emmons, L. K., Tzompa-Sosa, Z. A., Fischer, E. V., Sudo, K., Bovy, B., Walker, K. A., Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America (2016) Environ. Res. Lett, 11, p. 044010. , https://doi.org/10.1088/1748-9326/11/4/044010; Fried, A., Walega, J. G., Olson, J. R., Crawford, J. H., Chen, G., Weibring, P., Richter, D., Millet, D. B., Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: methods, observed distributions, and measurement-model comparisons (2008) J. Geophys. Res, 113, p. D10302. , https://doi.org/10.1029/2007JD009185; Fried, A., Cantrell, C., Olson, J., Crawford, J. H., Weibring, P., Walega, J., Richter, D., Sachse, G., Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multigeneration volatile organic carbon compounds (2011) Atmos. Chem. Phys, 11, pp. 11867-11894. , https://doi.org/10.5194/acp-11-11867-2011; Fried, A., Barth, M. C., Bela, M., Weibring, P., Richter, D., Walega, J., Li, Y., Woods, S., Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study (2016) J. Geophys. Res.-Atmos, 121, pp. 7430-7460. , https://doi.org/10.1002/2015JD024477; Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J., Blake, D. R., Blake, N. J., Brune, W., Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea 2019s northwest coast during the Korea-United States Air Quality study: Estimation of emission fluxes and effects on air quality (2020) Elem. Sci. Anth, 8, p. 1. , https://doi.org/10.1525/elementa.2020.121; Fu, T.-M., Jacob, D. J., Palmer, P. I., Chance, K., Wang, Y. X., Barletta, B., Blake, D. R., Pilling, M. J., Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone (2007) J. Geophys. Res, 112, p. D06312. , https://doi.org/10.1029/2006JD007853; Gu, D., Guenther, A. B., Shilling, J. E., Yu, H., Huang, M., Zhao, C., Yang, Q., Hu, Z., Airborne observations reveal elevational gradient in tropical forest isoprene emissions (2017) Nat. Commun, 8, p. 15541. , https://doi.org/10.1038/ncomms15541; Gu, S., Guenther, A., Faiola, C., Effects of anthropogenic and biogenic volatile organic compounds on Los Angeles air quality (2021) Environ. Sci. Technol, 55, pp. 12191-12201. , https://doi.org/10.1021/acs.est.1c01481; Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Zimmerman, P., A global model of natural volatile organic compound emissions (1995) J. Geophys. Res, 100, pp. 8873-8892. , https://doi.org/10.1029/94JD02950; Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) (2006) Atmos. Chem. Phys, 6, pp. 3181-3210. , https://doi.org/10.5194/acp-6-3181-2006; Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., Wang, X., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions (2012) Geosci. Model Dev, 5, pp. 1471-1492. , https://doi.org/10.5194/gmd-5-1471-2012; Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Kommareddy, A., High-resolution global maps of 21st-century forest cover change (2013) Science, 342, pp. 850-853. , https://doi.org/10.1126/science.1244693; Hase, F., Demoulin, P., Sauval, A. J., Toon, G. C., Bernath, P. F., Goldman, A., Hannigan, J.W., Rinsland, C. P., An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm1 (2006) J. Quant. Spectrosc. Ra, 102, pp. 450-463. , https://doi.org/10.1016/j.jqsrt.2006.02.026; Hesbach, H., Bell, B., Berrisford, P., Hirahara, S., Hor{\'a}nyi, A., Mu{\~n}oz-Sabater, J., Nicolas, J., Th{\'e}paut, J.-N., The ERA5 global reanalysis (2020) Q. J. Roy. Meteorol. Soc, 146, pp. 1999-2049. , https://doi.org/10.1002/qj.3803; Hickman, J. E., Andela, N., Tsigaridis, K., Galy-Lacaux, C., Ossohou, M., Bauer, S. E., Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017 (2021) P. Acad. Nat. Soc. USA, 118, p. e2002579118. , https://doi.org/10.1073/pnas.2002579118; Houweling, S., Dentener, F., Lelieveld, J., The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry (1998) J. Geophys. Res, 103, pp. 10673-10696. , https://doi.org/10.1029/97JD03582; Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Friedrich, R., Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970-2012 (2017) Atmos. Chem. Phys, 17, pp. 7683-7701. , https://doi.org/10.5194/acp-17-7683-2017; Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Fisher, J. A., The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results (2010) Atmos. Chem. Phys, 10, pp. 5191-5212. , https://doi.org/10.5194/acp-10-5191-2010; Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Li, M., HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution (2015) Atmos. Chem. Phys, 15, pp. 11411-11432. , https://doi.org/10.5194/acp-15-11411-2015; Jones, N. B., Riedel, K., Allan, W., Wood, S., Palmer, P. I., Chance, K., Notholt, J., Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements (2009) Atmos. Chem. Phys, 9, pp. 7131-7142. , https://doi.org/10.5194/acp-9-7131-2009; Karl, T., Striednig, M., Graus, M., Hammerle, A., Wohlfahrt, G., Urban flux measurements reveal a large pool of oxygenated volatile organic compound emissions (2018) P. Nat. Acad. Sci. USA, 115, pp. 1186-1191. , https://doi.org/10.1073/pnas.1714715115; Kleipool, Q. L., Dobber, M. R., de Haan, J. F., Levelt, P. F., Earth surface reflectance climatology from 3 years of OMI data (2008) J. Geophys. Res, 113, p. D18308. , https://doi.org/10.1029/2008JD010290; Kwon, H.-A., Gonz{\'a}lez Abad, G., Nowlan, C. R., Chong, H., Souri, A. H., Vigouroux, C., R{\"o}hling, A., Morino, I., Validation of OMPS Suomi NPP and OMPS NOAA-20 formaldehyde total columns with NDACC FTIR observations (2023) Earth Space Sci, 10, p. e2022EA002778. , https://doi.org/10.1029/2022EA002778; Lawson, S. J., Selleck, P. W., Galbally, I. E., Keywood, M. D., Harvey, M. J., Lerot, C., Helmig, D., Ristovski, Z., Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere (2015) Atmos. Chem. Phys, 15, pp. 223-240. , https://doi.org/10.5194/acp-15-223-2015; Lelieveld, J., Butler, T., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Williams, J., Atmospheric oxidation capacity sustained by a tropical forest (2008) Nature, 452, pp. 737-740. , https://doi.org/10.1038/nature06870, T. M., and; Levelt, P. F., van den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Saari, H., The ozone monitoring instrument (2006) IEEE T. Geosci. Remote. Sens, 44, pp. 1093-1101; Madronich, S., Flocke, S., The role of solar radiation in atmospheric chemistry (1998) Handbook of Environmental Chemistry, pp. 1-26. , https://doi.org/10.1007/978-3-540-69044-3_1, edited by: Boule, P., Springer Verlag, Heidelberg; Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., Reeves, C. E., Pye, H. O. T., Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter (2014) Atmos. Chem. Phys, 14, pp. 7693-7703. , https://doi.org/10.5194/acp-14-7693-2014; Martin, R. V., Chance, K. V, Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E. J., Gleason, J., Koelemeijer, R. B. A., An improved retrieval of tropospheric nitrogen dioxide from GOME (2002) J. Geophys. Res, 107, p. 4437. , https://doi.org/10.1029/2001JD001027; Martin, R. V., Parrish, D. D., Ryerson, T. B., Nicks, T. B., Chance, K., Kurosu, T. P., Jacob, D. J., Wert, B. P., (2004) Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States, 109, p. D24307. , https://doi.org/10.1029/2004JD004869; Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Zamora, R. J., OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville (1999) Tennessee, summer, 108, p. 4617. , https://doi.org/10.1029/2003JD003551, 2003; McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D., Jimenez, J. L., Trainer, M., Volatile chemical products emerging as largest petrochemical source of urban organic emissions (2018) Science, 359, pp. 760-764. , https://doi.org/10.1126/science.aaq0524; Meller, R., Moortgat, G. K., Temperature dependence of the absorption cross-sections of formaldehyde between 223 and 323K in the wavelength range 225-375 nm (2000) J. Geophys. Res, 105, pp. 7089-7101. , https://doi.org/10.1029/1999JD901074; Miao, R., Chen, Q., Shrivastava, M., Chen, Y., Zhang, L., Hu, J., Zheng, Y., Liao, K., Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels (2021) Atmos. Chem. Phys, 21, pp. 16183-16201. , https://doi.org/10.5194/acp-21-16183-2021; Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S., Fried, A., Walega, J., Clarke, A. D., Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission (2006) J. Geophys. Res, 111, p. D24S02. , https://doi.org/10.1029/2005JD006853; Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L., Guenther, A., Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor (2008) J. Geophys. Res, 113, p. D02307. , https://doi.org/10.1029/2007JD008950; Millet, D. B., Guenther, A., Siegel, D. A., Nelson, N. B., Singh, H. B., de Gouw, J. A., Warneke, C., Barkley, M., Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations (2010) Atmos. Chem. Phys, 10, pp. 3405-3425. , https://doi.org/10.5194/acp-10-3405-2010; Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B., Goldstein, A. H., Airborne flux measurements of biogenic isoprene over California (2014) Atmos. Chem. Phys, 14, pp. 10631-10647. , https://doi.org/10.5194/acp-14-10631-2014; Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Zavala, M., An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation (2010) Atmos. Chem. Phys, 10, pp. 8697-8760. , https://doi.org/10.5194/acp-10-8697-2010; M{\"u}ller, J.-F., Brasseur, G., IMAGES: A three-dimensional chemical transport model of the global troposphere (1995) J. Geophys. Res, 100, pp. 16445-16490. , https://doi.org/10.1029/94JD03254; M{\"u}ller, J.-F., Stavrakou, T., Inversion of CO and NOx emissions using the adjoint of the IMAGES model (2005) Atmos. Chem. Phys, 5, pp. 1157-1186. , https://doi.org/10.5194/acp-5-1157-2005; M{\"u}ller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J., Guenther, A. B., Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model (2008) Atmos. Chem. Phys, 8, pp. 1329-1341. , https://doi.org/10.5194/acp-8-1329-2008; M{\"u}ller, J.-F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P.-F., Clerbaux, C., Sweeney, C., Top-down CO emissions based on IASI observations and hemispheric constraints on OH levels (2018) Geophys. Res. Lett, 45, pp. 1621-1629. , https://doi.org/10.1002/2017GL076697; M{\"u}ller, J.-F., Stavrakou, T., Peeters, J., Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1)-Part 1: Chemical mechanism (2019) Geosci. Model Dev, 12, pp. 2307-2356. , https://doi.org/10.5194/gmd-12-2307-2019; M{\"u}ller, J.-F., (2024) Satellite-derived isoprene emission estimates based on bias-corrected OMI HCHO (2005-2017), BIRA-IASB [data set], , https://emissions.aeronomie.be/index.php/omi-based/isoprene-bc-omi-based, (last access: 19 February 2024); (2024) NASA Tropospheric Chemistry Campaigns-Merged Data Sets, , https://www-air.larc.nasa.gov/missions/merges, NASA: NASA [data set], (last access: 19 February 2024); N{\"o}lscher, A. C., Yanez-Serrano, A. M., Wolff, S., Carioca de Araujo, A., Lavric, J. V., Kesselmeier, J., Williams, J., Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity (2016) Nat. Comm, 7, p. 10383. , https://doi.org/10.1038/ncomms10383; Oomen, G.-M., M{\"u}ller, J.-F., Stavrakou, T., De Smedt, I., Blumenstock, T., Kivi, R., Makarova, M., Wagner, T., Weekly-derived top-down VOC fluxes over Europe from TROPOMI HCHO data in 2018-2021 (2023) EGUsphere, , https://doi.org/10.5194/egusphere-2023-1972, [preprint]; Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Fuchs, H., Importance of isomerization reactions for OH radical regeneration from the photooxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR (2020) Atmos. Chem. Phys, 20, pp. 3333-3355. , https://doi.org/10.5194/acp-20-3333-2020; Opacka, B., M{\"u}ller, J.-F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J., Guenther, A. B., Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model (2021) Atmos. Chem. Phys, 21, pp. 8413-8436. , https://doi.org/10.5194/acp-21-8413-2021; Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., Kurosu, T. P., Mapping isoprene emissions over North America using formaldehyde column observations from space (2003) J. Geophys. Res, 108, p. 4180. , https://doi.org/10.1029/2002JD002153; Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A., Sumner, A. L., Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column (2006) J. Geophys. Res, 111, p. D12315. , https://do.org/:10.1029/2005JD006689; Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Cui, G., Six global biomass burning emission datasets: intercomparison and application in one global aerosol model (2020) Atmos. Chem. Phys, 20, pp. 969-994. , https://doi.org/10.5194/acp-20-969-2020; Paulot, F., Crounse, J. D., Kjaergaard, H. G., K{\"u}rten, A., Clair, J. M., Seinfeld, J. H., andWennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of isoprene (2009) Science, 325, pp. 730-733. , https://doi.org/10.1126/science.1172910, St. Clair; Peeters, J., M{\"u}ller, J.-F., Stavrakou, T., Nguyen, S. V., Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism (2014) J. Phys. Chem. A, 118, pp. 8625-8643. , https://doi.org/10.1021/jp5033146; P{\'e}tron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., Trainer, M., Schnell, R., A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin (2014) J. Geophys. Res, 119, pp. 6836-6852. , https://doi.org/10.1002/2013JD021272; Possell, M., Hewitt, C. N., Isoprene emissions from plants are mediated by atmospheric CO2 concentrations (2011) Glob. Change Biol, 17, pp. 1595-1610. , https://doi.org/10.1111/j.1365-2486.2010.02306.x; Pougatchev, N. S., Connor, B. J., Rinsland, C. P., Infrared measurements of the ozone vertical distribution above Kitt Peak (1995) J. Geophys. Res, 100, pp. 16689-16697. , https://doi.org/10.1029/95JD01296; Read, K. A., Carpenter, L. J., Arnold, S. R., Beale, R., Nightingale, P. D., Hopkins, J. R., Lewis, A. C., Pickering, S. J., Multiannual observations of acetone, methanol, and acetaldehyde in remote Tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity (2012) Envrion. Sci. Technol, 46, pp. 11028-11039. , https://https://doi.org/10.1021/es302082p; Richter, D., Weibring, P., Walega, J. G., Fried, A., Spuler, S. M., Taubman, M. S., Compact highly sensitive multi-species airborne mid-IR spectrometer (2015) Appl. Phys. B, 119, pp. 119-131. , https://doi.org/10.1007/s00340-015-6038-8; Rodgers, C. D., (2000) Inverse methods for atmospheric sounding: theory and practice, , https://api.semanticscholar.org/CorpusID:60696486, World Scientific Publishing, Singapore-New Jersey-London-Hong Kong, ISBN 13 9789810227401, (last access: 19 February 2024); Rodgers, C. D., Connor, B. J., Intercomparison of remote sounding instruments (2003) J. Geophys. Res, 108, p. 4116. , https://doi.org/10.1029/2002JD002299; Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Wagner, G., The HITRAN2012 molecular spectroscopic database (2013) J. Quant. Spectrosc. Ra, 130, pp. 4-50. , https://doi.org/10.1016/j.jqsrt.2013.07.002; Sanchez, D., Seco, R., Gu, D., Guenther, A., Mak, J., Lee, Y., Kim, D., Kim, S., Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS-a case study in a suburban forest of the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ) 2016 (2021) Atmos. Chem. Phys, 21, pp. 6331-6345. , https://doi.org/10.5194/acp-21-6331-2021; Seinfeld, J., Pandis, S., (1988) Atmospheric chemistry and physics: From air pollution to climate change, p. 1326. , https://doi.org/10.1080/00139157.1999.10544295, edited by: John Wiley and Sons, New York; Sen, P. K., Estimates of the regression coefficient based on Kendall's tau (1968) J. Am. Stat. Assoc, 63, pp. 1379-1389. , https://doi.org/10.2307/2285891; Shim, C., Wang, Y., Choi, Y., Palmer, P. I., Abbot, D. S., Chance, K., Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements (2005) J. Geophys. Res, 110, p. D24301. , https://doi.org/10.1029/2004JD005629; Shu, Y. S., Atkinson, R., Rate constants for the gasphase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296_2 K (1994) Int. J. Chem. Kin, 26, pp. 1193-1205. , https://doi.org/10.1002/kin.550261207; Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T., Kajos, M. K., Patokoski, J., Hellen, H., Kulmala, M., OH reactivity measurements within a boreal forest: Evidence for unknown reactive emissions (2010) Environ. Sci. Technol, 44, pp. 6614-6620. , https://doi.org/10.1021/es101780b; Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., M{\"u}ller, J.-F., Knorr, W., Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years (2014) Atmos. Chem. Phys, 14, pp. 9317-9341. , https://doi.org/10.5194/acp-14-9317-2014; Sofiev, M., Vankevich, R., Ermakova, T., Hakkarainen, J., Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions (2013) Atmos. Chem. Phys, 13, pp. 7039-7052. , https://doi.org/10.5194/acp-13-7039-2013; Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W., Zhang, Q., Forster, P., Aerosol mass spectrometer constraint on the global secondary organic aerosol budget (2011) Atmos. Chem. Phys, 11, pp. 12109-12136. , https://doi.org/10.5194/acp-11-12109-2011; Spurr, R. J. D., LIDORT and VLIDORT: Linearized pseudospherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems (2008) Light Scattering Reviews, pp. 229-271. , https://doi.org/10.1007/978-3-540-48546-9, edited by: Kokhanovsky, A., Springer, Berlin, Heidelberg; Stavrakou, T., M{\"u}ller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., Guenther, A., Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns (2009) Atmos. Chem. Phys, 9, pp. 1037-1060. , https://doi.org/10.5194/acp-9-1037-2009; Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., M{\"u}ller, J.-F., First space-based derivation of the global atmospheric methanol emission fluxes (2011) Atmos. Chem. Phys, 11, pp. 4873-4898. , https://doi.org/10.5194/acp-11-4873-2011; Stavrakou, T., M{\"u}ller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazi{\`e}re, M., Vigouroux, C., Guenther, A., How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? (2015) Atmos. Chem. Phys, 15, pp. 11861-11884. , https://doi.org/10.5194/acp-15-11861-2015; Stavrakou, T., M{\"u}ller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Impact of climate variability on volatile organic compounds emissions assessed using OMI formaldehyde observations (2018) Geophys. Res. Lett, 45, pp. 8681-8689. , https://doi.org/10.1029/2018GL078676; Tikhonov, A., Solution of incorrectly formulated problems and the regularization method (1963) Sov. Dok, 4, pp. 1035-1038; Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Pszenny, A., Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission (2016) J. Geophys. Res.-Atmos, 121, p. 4967. , https://doi.org/10.1002/2015JD024297; Torres, O., Bhartia, P. K., Jethva, H., Ahn, C., Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products (2018) Atmos. Meas. Tech, 11, pp. 2701-2715. , https://doi.org/10.5194/amt-11-2701-2018; Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Zhou, X., Why do models overestimate surface ozone in the Southeast United States? (2016) Atmos. Chem. Phys, 16, pp. 13561-13577. , https://doi.org/10.5194/acp-16-13561-2016; Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R., Blake, D. R., Brune, W. H., Yu, F., Constraining remote oxidation capacity with ATom observations (2020) Atmos. Chem. Phys, 20, pp. 7753-7781. , https://doi.org/10.5194/acp-20-7753-2020; Tzompa-Sosa, Z. A., Henderson, B. H., Keller, C. A., Travis, K., Mahieu, E., Franco, B., Estes, M., Fischer, E. V., Atmospheric implications of large C2-C5 alkane emissions from the U.S. oil and gas industry (2019) J. Geophys. Res, 124, pp. 1148-1169. , https://doi.org/10.1029/2018JD028955; van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Kasibhatla, P. S., Global fire emissions estimates during 1997-2016 (2017) Earth Syst. Sci. Data, 9, pp. 697-720. , https://doi.org/10.5194/essd-9-697-2017; Veefkind, J. P., de Haan, J. F., Sneep, M., Levelt, P. F., Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations (2016) Atmos. Meas. Tech, 9, pp. 6035-6049. , https://doi.org/10.5194/amt-9-6035-2016; Vigouroux, C., Hendrick, F., Stavrakou, T., Dils, B., De Smedt, I., Hermans, C., Merlaud, A., De Mazi{\`e}re, M., Ground-based FTIR and MAX-DOAS observations of formaldehyde at R{\'e}union Island and comparisons with satellite and model data (2009) Atmos. Chem. Phys, 9, pp. 9523-9544. , https://doi.org/10.5194/acp-9-9523-2009; Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker, C., Blumenstock, T., De Mazi{\`e}re, M., Garc{\'i}a, O., Toon, G., NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances (2018) Atmos. Meas. Tech, 11, pp. 5049-5073. , https://doi.org/10.5194/amt-11-5049-2018; Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazi{\`e}re, M., De Smedt, I., Winkler, H., TROPOMI-Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations (2020) Atmos. Meas. Tech, 13, pp. 3751-3767. , https://doi.org/10.5194/amt-13-3751-2020; Vohra, K., Marais, E. A., Suckra, S., Kramer, L., Bloss, W. J., Sahu, R., Gaur, A., Coheur, P.-F., Long-term trends in air quality in major cities in the UK and India: a view from space (2021) Atmos. Chem. Phys, 21, pp. 6275-6296. , https://doi.org/10.5194/acp-21-6275-2021; Wang, S., Apel, E., Hornbrook, R., Campos, T., Gao, R.-S., Rogers, D., Pierce, B., Volkamer, R., Sources and sinks of OVOCs in the tropical free troposphere during TORERO (2012) AGU Fall meeting, , Poster A51E-0115, San Francisco; Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook, A. M., Hatch, C. D., Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013 (2016) Atmos. Meas. Tech, 9, pp. 3063-3093. , https://doi.org/10.5194/amt-9-3063-2016; Weibring, P., Richter, D., Walega, J. G., Fried, A., First demonstration of a high performance difference frequency spectrometer on airborne platforms (2007) Opt. Express, 15, pp. 13476-13495. , https://doi.org/10.1364/OE.15.013476; Wells, K. C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H., de Gouw, J. A., Graus, M., Fuentes, J. D., Global measurements of isoprene from space: Constraints on emissions and atmospheric oxidation (2020) Nature, 585, pp. 225-233. , https://doi.org/10.1038/s41586-020-2664-3; Wells, K. C., Millet, D. B., Payne, V. H., Vigouroux, C., Aquino, C. A. B., De Mazi{\`e}re, M., de Gouw, J. A., Wisthaler, A., Next-generation isoprene measurements from space: Quantifying daily variability at high resolution (2022) J. Geophys. Res, 127, p. e2021JD036181. , https://doi.org/10.1029/2021JD036181; Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., Mc-Vay, R., Mertens, L. A., Nguyen, T. B., Seinfeld, J. H., Gas-phase reactions of isoprene and its major oxidation products (2018) Chem. Rev, 118, pp. 3337-3390. , https://doi.org/10.1021/acs.chemrev.7b00439; Williams, J. E., Boersma, K. F., Le Sager, P., Verstraeten, W.W., The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation (2017) Geosci. Model Dev, 10, pp. 721-750. , https://doi.org/10.5194/gmd-10-721-2017; Yang, Y. D., Shao, M., Wang, X. M., Nolscher, A. C., Kessel, S., Guenther, A., Williams, J., Towards a quantitative understanding of total OH reactivity: A review (2016) Atmos. Environ, 134, pp. 147-161. , https://doi.org/10.1016/j.atmosenv.2016.03.010; Yu, H., Guenther, A., Gu, D., Warneke, C., Geron, C., Goldstein, A., Graus, M., Yuan, B., Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests (2017) Sci. Total Environ, 595, pp. 149-158. , https://doi.org/10.1016/j.scitotenv.2017.03.262; Yuan, H., Dai, Y., Xiao, Z., Ji, D., Shangguan, W., Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling (2011) Remote Sens. Environ, 115, pp. 1171-1187. , https://doi.org/10.1016/j.rse.2011.01.001; Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Wolfe, G. M., Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US (2016) Atmos. Chem. Phys, 16, pp. 13477-13490. , https://doi.org/10.5194/acp-16-13477-2016; Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L., Gonzalez Abad, G., Chance, K., Long-term (2005-2014) trends in formaldehyde columns across North America as seen by the OMI satellite instrument; Evidence of changing emissions of volatile organic compounds (2017) J. Geophys. Res, 44, pp. 7079-7086. , https://doi.org/10.1002/2017GL073859",
year = "2024",
month = feb,
day = "22",
doi = "10.5194/acp-24-2207-2024",
language = "Английский",
volume = "24",
pages = "2207--2237",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "Copernicus GmbH ",
number = "4",

}

RIS

TY - JOUR

T1 - Bias correction of OMI HCHO columns based on FTIR and aircraft measurements and impact on top-down emission estimates

AU - Müller, J.-F.

AU - Stavrakou, T.

AU - Oomen, G.-M.

AU - Opacka, B.

AU - De Smedt, I.

AU - Guenther, A.

AU - Vigouroux, C.

AU - Langerock, B.

AU - Aquino, C.A.B.

AU - Grutter, M.

AU - Hannigan, J.

AU - Hase, F.

AU - Kivi, R.

AU - Lutsch, E.

AU - Mahieu, E.

AU - Makarova, M.

AU - Metzger, J.-M.

AU - Morino, I.

AU - Murata, I.

AU - Nagahama, T.

AU - Notholt, J.

AU - Ortega, I.

AU - Palm, M.

AU - Röhling, A.

AU - Stremme, W.

AU - Strong, K.

AU - Sussmann, R.

AU - Té, Y.

AU - Fried, A.

N1 - Export Date: 11 March 2024 Адрес для корреспонденции: Müller, J.-F.; Royal Belgian Institute for Space Aeronomy (BIRA-IASB)Belgium; эл. почта: jfm@aeronomie.be Сведения о финансировании: Horizon 2020 Framework Programme, H2020, 101004318 Сведения о финансировании: Seventh Framework Programme, FP7, 6007405 Сведения о финансировании: European Commission, EC Сведения о финансировании: European Space Agency, ESA, 4000130630 Сведения о финансировании: Bundesministerium für Bildung und Forschung, BMBF, 01LG1904A Сведения о финансировании: Belgian Federal Science Policy Office, BELSPO, B2/202/01/EQUATOR Сведения о финансировании: Nagoya University, NU Сведения о финансировании: Sorbonne Université Текст о финансировании 1: This research has been supported by the EQUATOR project of the BRAIN-be 2.0 program from the Belgian Science Policy Office (Belspo) (grant no. B2/202/01/EQUATOR), by the SEEDS project funded by the European Commission under the H2020 program (grant no. 101004318), by the ProDEx-12 project TROVA-E2 of the European Space Agency (grant no. 4000130630) and by the BMBF (German Ministry of Research and Education) in the project ROMIC-II, subproject TroStra (grant no. 01LG1904A). Текст о финансировании 2: The Paris site has received funding from Sorbonne Université, the French research center CNRS, the French space agency CNES and Région Île-de-France. FTIR operations of Rikubetsu and Tsukuba are supported in part by the GOSAT series project. The Rikubetsu NDACC site is funded by the joint research program of the Institute for Space-Earth Environmental Research (ISEE), Nagoya University. We thank the AWI Bremerhaven, Germany, and the Meteorological Service Suriname for logistical support and the senate of Bremen for logistical and financial support. We acknowledge the support of the station personnel at the AWIPEV research base in Ny-Ålesund, Spitsbergen, and Cor Becker for support in Paramaribo, Suriname. Текст о финансировании 3: HCHO satellite data from OMI were produced in the scope of the European FP7 project QA4ECV (grant no. 6007405). We thank Dan Smale and the National Institute of Water and Atmospheric Research (NIWA) for the provision of the Lauder FTIR data, and we thank Nicholas Jones of the Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, Australia, for provision of Wollongong FTIR data. Thanks to Thomas Hanisco and the NASA Goddard Space Flight Center (GSFC) for provision of ISAF data (SENEX). Emmanuel Mahieu is a senior research associate with the F.R.S. – FNRS. Пристатейные ссылки: Abbot, D. S., Palmer, P. I., Martin, R. V., Chance, K. V., Jacob, D. J., Guenther, A., Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space (2003) Geophys. Res. Lett, 30, p. 1886. , https://doi.org/10.1029/2003GL017336; Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., Wennberg, P. O., Emission factors for open and domestic biomass burning for use in atmospheric models (2011) Atmos. Chem. Phys, 11, pp. 4039-4072. , https://doi.org/10.5194/acp-11-4039-2011; Andela, N., van der Werf, G., Recent trends in African fires driven by cropland expansion and El Niño to La Niña transition (2014) Nat. Clim. Chang, 4, pp. 791-795. , https://doi.org/10.1038/nclimate2313; Andreae, M. O., Emission of trace gases and aerosols from biomass burning-an updated assessment (2019) Atmos. Chem. Phys, 19, pp. 8523-8546. , https://doi.org/10.5194/acp-19-8523-2019; Archibald, A. T., Neu, J. L., Elshorbany, Y. F., Copper, O. R., Young, P. J., Akiyoshi, H., Cox, R. A., Zeng, G., Tropospheric Ozone Assessment Report: A critical review of changes in the tropospheric ozone burden and budget from 1850 to 2100 (2020) Elem. Sci. Anth, 8, pp. 1-53. , https://doi.org/10.1525/elementa.2020.034; Arneth, A., Schurgers, G., Lathiere, J., Duhl, T., Beerling, D. J., Hewitt, C. N., Martin, M., Guenther, A., Global terrestrial isoprene emission models: sensitivity to variability in climate and vegetation (2011) Atmos. Chem. Phys, 11, pp. 8037-8052. , https://doi.org/10.5194/acp-11-8037-2011; Atkinson, R., Atmospheric chemistry of VOCs and NOx (2000) Atmos. Environ, 34, pp. 2063-2101. , https://doi.org/10.1016/S1352-2310(99)00460-4; Barkley, M. P., Palmer, P. I., Ganzeveld, L., Arneth, A., Hagberg, D., Karl, T., Guenther, A., Yantosca, R., Can a "state of the art" chemistry transport model simulate Amazonian tropospheric chemistry? (2011) J. Geophys. Res, 116, p. D16302. , https://doi.org/10.1029/2011JD015893; Barth, M. C., Cantrell, C. A., Brune, W. H., Rutledge, S. A., Crawford, J. H., Huntrieser, H., Carey, L. D., Ziegler, C., The Deep Convective Clouds and Chemistry (DC3) Field Campaign (2015) B. Am. Meteor. Soc, 96, pp. 1281-1309. , https://doi.org/10.1175/BAMS-D-13-00290.1; Bates, K. H., Jacob, D. J., A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol (2019) Atmos. Chem. Phys, 19, pp. 9613-9640. , https://doi.org/10.5194/acp-19-9613-2019; Bauwens, M., Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Wiedinmyer, C., Guenther, A., Nine years of global hydrocarbon emissions based on source inversion of OMI formaldehyde observations (2016) Atmos. Chem. Phys, 16, pp. 10133-10158. , https://doi.org/10.5194/acp-16-10133-2016; Bauwens, M., Stavrakou, T., Müller, J.-F., Van Schaeybroeck, B., De Cruz, L., De Troch, R., Giot, O., Guenther, A., Recent past (1979-2014) and future (2070-2099) isoprene fluxes over Europe simulated with the MEGAN-MOHYCAN model (2018) Biogeosciences, 15, pp. 3673-3690. , https://doi.org/10.5194/bg-15-3673-2018; Bauwens, M., Verreyken, B., Stavrakou, T., Müller, J.-F., De Smedt, I., Spaceborne evidence for significant anthropogenic VOC trends in Asian cities over 2005-2019 (2022) Environ. Res. Lett, 17, p. 015008. , https://doi.org/10.1088/1748-9326/ac46eb; Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Schultz, M., Global model of tropospheric chemistry with assimilated meteorology: Model description and evaluation (2001) J. Geophys. Res, 106, pp. 23073-23095. , https://doi.org/10.1029/2010JD014870; Boeke, N. L., Marshall, J. D., Alvarez, S., Chance, K. V., Fried, A., Kurosu, T. P., Rappenglück, B., Millet, D. B., Formaldehyde columns from the Ozone Monitoring Instrument: Urban versus background levels and evaluation using aircraft data and a global model (2011) J. Geophys. Res, 116, p. D05303. , https://doi.org/10.1029/2010JD014870; Boersma, K. F., Eskes, H. J., Brinksma, E. J., Error analysis for tropospheric NO2 retrieval from space (2004) J. Geophys. Res, 109, p. D04311. , https://doi.org/10.1029/2003JD003962; Cazorla, M., Wolfe, G. M., Bailey, S. A., Swanson, A. K., Arkinson, H. L., Hanisco, T. F., A new airborne laser-induced fluorescence instrument for in situ detection of formaldehyde throughout the troposphere and lower stratosphere (2015) Atmos. Meas. Tech, 8, pp. 541-552. , https://doi.org/10.5194/amt-8-541-2015; Chameides, W. L., Lindsay, R. W., Richardson, J., Kiang, C. S., The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as a case study (1988) Science, 241, pp. 1473-1475. , https://doi.org/10.1126/science.3420404; Chen, X., Millet, D. B., Singh, H. B., Wisthaler, A., Apel, E. C., Atlas, E. L., Blake, D. R., Yuan, B., On the sources and sinks of atmospheric VOCs: an integrated analysis of recent aircraft campaigns over North America (2019) Atmos. Chem. Phys, 19, pp. 9097-9123. , https://doi.org/10.5194/acp-19-9097-2019; Crawford, J. H., Pickering, K. E., DISCOVER-AQ: Advancing strategies for air quality observations in the next decade (2014) Environ. Manage, Air andWaste Management Association's Magazine for Environmental Managers, 4. , Pittsburgh, Pa, Air Waste Manage. Assoc; De Mazière, M., Thompson, A. M., Kurylo, M. J., Wild, J. D., Bernhard, G., Blumenstock, T., Braathen, G. O., Strahan, S. E., The Network for the Detection of Atmospheric Composition Change (NDACC): history, status and perspectives (2018) Atmos. Chem. Phys, 18, pp. 4935-4964. , https://doi.org/10.5194/acp-18-4935-2018; De Smedt, I., Müller, J.-F., Stavrakou, T., van der A, R., Eskes, H., Van Roozendael, M., Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors (2008) Atmos. Chem. Phys, 8, pp. 4947-4963. , https://doi.org/10.5194/acp-8-4947-2008; De Smedt, I., Stavrakou, T., Hendrick, F., Danckaert, T., Vlemmix, T., Pinardi, G., Theys, N., Van Roozendael, M., Diurnal, seasonal and long-term variations of global formaldehyde columns inferred from combined OMI and GOME-2 observations (2015) Atmos. Chem. Phys, 15, pp. 12519-12545. , https://doi.org/10.5194/acp-15-12519-2015; De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Veefkind, P., Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project (2018) Atmos. Meas. Tech, 11, pp. 2395-2426. , https://doi.org/10.5194/amt-11-2395-2018; De Smedt, I., Pinardi, G., Vigouroux, C., Compernolle, S., Bais, A., Benavent, N., Boersma, F., Van Roozendael, M., Comparative assessment of TROPOMI and OMI formaldehyde observations and validation against MAX-DOAS network column measurements (2021) Atmos. Chem. Phys, 21, pp. 12561-12593. , https://doi.org/10.5194/acp-21-12561-2021; Di Carlo, P., Brune, W. H., Martinez, M., Harder, H., Lesher, R., Ren, X. R., Thornberry, T., Campbell, C., Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs (2004) Science, 304, pp. 722-725. , https://doi.org/10.1126/Science.1094392; Emmerson, K. M., Galbally, I. E., Guenther, A. B., Paton-Walsh, C., Guerette, E.-A., Cope, M. E., Keywood, M. D., Maleknia, S. D., Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia (2016) Atmos. Chem. Phys, 16, pp. 6997-7011. , https://doi.org/10.5194/acp-16-6997-2016; Fortems-Cheiney, A., Chevallier, F., Pison, I., Bousquet, P., Saunois, M., Szopa, S., Cressot, C., Fried, A., The formaldehyde budget as seen by a globalscale multi-constraint and multi-species inversion system (2012) Atmos. Chem. Phys, 12, pp. 6699-6721. , https://doi.org/10.5194/acp-12-6699-2012; Franco, B., Mahieu, E., Emmons, L. K., Tzompa-Sosa, Z. A., Fischer, E. V., Sudo, K., Bovy, B., Walker, K. A., Evaluating ethane and methane emissions associated with the development of oil and natural gas extraction in North America (2016) Environ. Res. Lett, 11, p. 044010. , https://doi.org/10.1088/1748-9326/11/4/044010; Fried, A., Walega, J. G., Olson, J. R., Crawford, J. H., Chen, G., Weibring, P., Richter, D., Millet, D. B., Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: methods, observed distributions, and measurement-model comparisons (2008) J. Geophys. Res, 113, p. D10302. , https://doi.org/10.1029/2007JD009185; Fried, A., Cantrell, C., Olson, J., Crawford, J. H., Weibring, P., Walega, J., Richter, D., Sachse, G., Detailed comparisons of airborne formaldehyde measurements with box models during the 2006 INTEX-B and MILAGRO campaigns: potential evidence for significant impacts of unmeasured and multigeneration volatile organic carbon compounds (2011) Atmos. Chem. Phys, 11, pp. 11867-11894. , https://doi.org/10.5194/acp-11-11867-2011; Fried, A., Barth, M. C., Bela, M., Weibring, P., Richter, D., Walega, J., Li, Y., Woods, S., Convective transport of formaldehyde to the upper troposphere and lower stratosphere and associated scavenging in thunderstorms over the central United States during the 2012 DC3 study (2016) J. Geophys. Res.-Atmos, 121, pp. 7430-7460. , https://doi.org/10.1002/2015JD024477; Fried, A., Walega, J., Weibring, P., Richter, D., Simpson, I. J., Blake, D. R., Blake, N. J., Brune, W., Airborne formaldehyde and volatile organic compound measurements over the Daesan petrochemical complex on Korea 2019s northwest coast during the Korea-United States Air Quality study: Estimation of emission fluxes and effects on air quality (2020) Elem. Sci. Anth, 8, p. 1. , https://doi.org/10.1525/elementa.2020.121; Fu, T.-M., Jacob, D. J., Palmer, P. I., Chance, K., Wang, Y. X., Barletta, B., Blake, D. R., Pilling, M. J., Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone (2007) J. Geophys. Res, 112, p. D06312. , https://doi.org/10.1029/2006JD007853; Gu, D., Guenther, A. B., Shilling, J. E., Yu, H., Huang, M., Zhao, C., Yang, Q., Hu, Z., Airborne observations reveal elevational gradient in tropical forest isoprene emissions (2017) Nat. Commun, 8, p. 15541. , https://doi.org/10.1038/ncomms15541; Gu, S., Guenther, A., Faiola, C., Effects of anthropogenic and biogenic volatile organic compounds on Los Angeles air quality (2021) Environ. Sci. Technol, 55, pp. 12191-12201. , https://doi.org/10.1021/acs.est.1c01481; Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Zimmerman, P., A global model of natural volatile organic compound emissions (1995) J. Geophys. Res, 100, pp. 8873-8892. , https://doi.org/10.1029/94JD02950; Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., Geron, C., Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) (2006) Atmos. Chem. Phys, 6, pp. 3181-3210. , https://doi.org/10.5194/acp-6-3181-2006; Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., Wang, X., The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions (2012) Geosci. Model Dev, 5, pp. 1471-1492. , https://doi.org/10.5194/gmd-5-1471-2012; Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Kommareddy, A., High-resolution global maps of 21st-century forest cover change (2013) Science, 342, pp. 850-853. , https://doi.org/10.1126/science.1244693; Hase, F., Demoulin, P., Sauval, A. J., Toon, G. C., Bernath, P. F., Goldman, A., Hannigan, J.W., Rinsland, C. P., An empirical line-by-line model for the infrared solar transmittance spectrum from 700 to 5000 cm1 (2006) J. Quant. Spectrosc. Ra, 102, pp. 450-463. , https://doi.org/10.1016/j.jqsrt.2006.02.026; Hesbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Thépaut, J.-N., The ERA5 global reanalysis (2020) Q. J. Roy. Meteorol. Soc, 146, pp. 1999-2049. , https://doi.org/10.1002/qj.3803; Hickman, J. E., Andela, N., Tsigaridis, K., Galy-Lacaux, C., Ossohou, M., Bauer, S. E., Reductions in NO2 burden over north equatorial Africa from decline in biomass burning in spite of growing fossil fuel use, 2005 to 2017 (2021) P. Acad. Nat. Soc. USA, 118, p. e2002579118. , https://doi.org/10.1073/pnas.2002579118; Houweling, S., Dentener, F., Lelieveld, J., The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry (1998) J. Geophys. Res, 103, pp. 10673-10696. , https://doi.org/10.1029/97JD03582; Huang, G., Brook, R., Crippa, M., Janssens-Maenhout, G., Schieberle, C., Dore, C., Guizzardi, D., Friedrich, R., Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970-2012 (2017) Atmos. Chem. Phys, 17, pp. 7683-7701. , https://doi.org/10.5194/acp-17-7683-2017; Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., Fisher, J. A., The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results (2010) Atmos. Chem. Phys, 10, pp. 5191-5212. , https://doi.org/10.5194/acp-10-5191-2010; Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., Keating, T., Li, M., HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution (2015) Atmos. Chem. Phys, 15, pp. 11411-11432. , https://doi.org/10.5194/acp-15-11411-2015; Jones, N. B., Riedel, K., Allan, W., Wood, S., Palmer, P. I., Chance, K., Notholt, J., Long-term tropospheric formaldehyde concentrations deduced from ground-based fourier transform solar infrared measurements (2009) Atmos. Chem. Phys, 9, pp. 7131-7142. , https://doi.org/10.5194/acp-9-7131-2009; Karl, T., Striednig, M., Graus, M., Hammerle, A., Wohlfahrt, G., Urban flux measurements reveal a large pool of oxygenated volatile organic compound emissions (2018) P. Nat. Acad. Sci. USA, 115, pp. 1186-1191. , https://doi.org/10.1073/pnas.1714715115; Kleipool, Q. L., Dobber, M. R., de Haan, J. F., Levelt, P. F., Earth surface reflectance climatology from 3 years of OMI data (2008) J. Geophys. Res, 113, p. D18308. , https://doi.org/10.1029/2008JD010290; Kwon, H.-A., González Abad, G., Nowlan, C. R., Chong, H., Souri, A. H., Vigouroux, C., Röhling, A., Morino, I., Validation of OMPS Suomi NPP and OMPS NOAA-20 formaldehyde total columns with NDACC FTIR observations (2023) Earth Space Sci, 10, p. e2022EA002778. , https://doi.org/10.1029/2022EA002778; Lawson, S. J., Selleck, P. W., Galbally, I. E., Keywood, M. D., Harvey, M. J., Lerot, C., Helmig, D., Ristovski, Z., Seasonal in situ observations of glyoxal and methylglyoxal over the temperate oceans of the Southern Hemisphere (2015) Atmos. Chem. Phys, 15, pp. 223-240. , https://doi.org/10.5194/acp-15-223-2015; Lelieveld, J., Butler, T., Crowley, J. N., Dillon, T. J., Fischer, H., Ganzeveld, L., Harder, H., Williams, J., Atmospheric oxidation capacity sustained by a tropical forest (2008) Nature, 452, pp. 737-740. , https://doi.org/10.1038/nature06870, T. M., and; Levelt, P. F., van den Oord, G. H., Dobber, M. R., Malkki, A., Visser, H., de Vries, J., Stammes, P., Saari, H., The ozone monitoring instrument (2006) IEEE T. Geosci. Remote. Sens, 44, pp. 1093-1101; Madronich, S., Flocke, S., The role of solar radiation in atmospheric chemistry (1998) Handbook of Environmental Chemistry, pp. 1-26. , https://doi.org/10.1007/978-3-540-69044-3_1, edited by: Boule, P., Springer Verlag, Heidelberg; Marais, E. A., Jacob, D. J., Guenther, A., Chance, K., Kurosu, T. P., Murphy, J. G., Reeves, C. E., Pye, H. O. T., Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: implications for oxidants and particulate matter (2014) Atmos. Chem. Phys, 14, pp. 7693-7703. , https://doi.org/10.5194/acp-14-7693-2014; Martin, R. V., Chance, K. V, Jacob, D. J., Kurosu, T. P., Spurr, R. J. D., Bucsela, E. J., Gleason, J., Koelemeijer, R. B. A., An improved retrieval of tropospheric nitrogen dioxide from GOME (2002) J. Geophys. Res, 107, p. 4437. , https://doi.org/10.1029/2001JD001027; Martin, R. V., Parrish, D. D., Ryerson, T. B., Nicks, T. B., Chance, K., Kurosu, T. P., Jacob, D. J., Wert, B. P., (2004) Evaluation of GOME satellite measurements of tropospheric NO2 and HCHO using regional data from aircraft campaigns in the southeastern United States, 109, p. D24307. , https://doi.org/10.1029/2004JD004869; Martinez, M., Harder, H., Kovacs, T. A., Simpas, J. B., Bassis, J., Lesher, R., Brune, W. H., Zamora, R. J., OH and HO2 concentrations, sources, and loss rates during the Southern Oxidants Study in Nashville (1999) Tennessee, summer, 108, p. 4617. , https://doi.org/10.1029/2003JD003551, 2003; McDonald, B. C., de Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A., Cappa, C. D., Jimenez, J. L., Trainer, M., Volatile chemical products emerging as largest petrochemical source of urban organic emissions (2018) Science, 359, pp. 760-764. , https://doi.org/10.1126/science.aaq0524; Meller, R., Moortgat, G. K., Temperature dependence of the absorption cross-sections of formaldehyde between 223 and 323K in the wavelength range 225-375 nm (2000) J. Geophys. Res, 105, pp. 7089-7101. , https://doi.org/10.1029/1999JD901074; Miao, R., Chen, Q., Shrivastava, M., Chen, Y., Zhang, L., Hu, J., Zheng, Y., Liao, K., Process-based and observation-constrained SOA simulations in China: the role of semivolatile and intermediate-volatility organic compounds and OH levels (2021) Atmos. Chem. Phys, 21, pp. 16183-16201. , https://doi.org/10.5194/acp-21-16183-2021; Millet, D. B., Jacob, D. J., Turquety, S., Hudman, R. C., Wu, S., Fried, A., Walega, J., Clarke, A. D., Formaldehyde distribution over North America: Implications for satellite retrievals of formaldehyde columns and isoprene emission (2006) J. Geophys. Res, 111, p. D24S02. , https://doi.org/10.1029/2005JD006853; Millet, D. B., Jacob, D. J., Boersma, K. F., Fu, T.-M., Kurosu, T. P., Chance, K., Heald, C. L., Guenther, A., Spatial distribution of isoprene emissions from North America derived from formaldehyde column measurements by the OMI satellite sensor (2008) J. Geophys. Res, 113, p. D02307. , https://doi.org/10.1029/2007JD008950; Millet, D. B., Guenther, A., Siegel, D. A., Nelson, N. B., Singh, H. B., de Gouw, J. A., Warneke, C., Barkley, M., Global atmospheric budget of acetaldehyde: 3-D model analysis and constraints from in-situ and satellite observations (2010) Atmos. Chem. Phys, 10, pp. 3405-3425. , https://doi.org/10.5194/acp-10-3405-2010; Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B., Goldstein, A. H., Airborne flux measurements of biogenic isoprene over California (2014) Atmos. Chem. Phys, 14, pp. 10631-10647. , https://doi.org/10.5194/acp-14-10631-2014; Molina, L. T., Madronich, S., Gaffney, J. S., Apel, E., de Foy, B., Fast, J., Ferrare, R., Zavala, M., An overview of the MILAGRO 2006 Campaign: Mexico City emissions and their transport and transformation (2010) Atmos. Chem. Phys, 10, pp. 8697-8760. , https://doi.org/10.5194/acp-10-8697-2010; Müller, J.-F., Brasseur, G., IMAGES: A three-dimensional chemical transport model of the global troposphere (1995) J. Geophys. Res, 100, pp. 16445-16490. , https://doi.org/10.1029/94JD03254; Müller, J.-F., Stavrakou, T., Inversion of CO and NOx emissions using the adjoint of the IMAGES model (2005) Atmos. Chem. Phys, 5, pp. 1157-1186. , https://doi.org/10.5194/acp-5-1157-2005; Müller, J.-F., Stavrakou, T., Wallens, S., De Smedt, I., Van Roozendael, M., Potosnak, M. J., Rinne, J., Guenther, A. B., Global isoprene emissions estimated using MEGAN, ECMWF analyses and a detailed canopy environment model (2008) Atmos. Chem. Phys, 8, pp. 1329-1341. , https://doi.org/10.5194/acp-8-1329-2008; Müller, J.-F., Stavrakou, T., Bauwens, M., George, M., Hurtmans, D., Coheur, P.-F., Clerbaux, C., Sweeney, C., Top-down CO emissions based on IASI observations and hemispheric constraints on OH levels (2018) Geophys. Res. Lett, 45, pp. 1621-1629. , https://doi.org/10.1002/2017GL076697; Müller, J.-F., Stavrakou, T., Peeters, J., Chemistry and deposition in the Model of Atmospheric composition at Global and Regional scales using Inversion Techniques for Trace gas Emissions (MAGRITTE v1.1)-Part 1: Chemical mechanism (2019) Geosci. Model Dev, 12, pp. 2307-2356. , https://doi.org/10.5194/gmd-12-2307-2019; Müller, J.-F., (2024) Satellite-derived isoprene emission estimates based on bias-corrected OMI HCHO (2005-2017), BIRA-IASB [data set], , https://emissions.aeronomie.be/index.php/omi-based/isoprene-bc-omi-based, (last access: 19 February 2024); (2024) NASA Tropospheric Chemistry Campaigns-Merged Data Sets, , https://www-air.larc.nasa.gov/missions/merges, NASA: NASA [data set], (last access: 19 February 2024); Nölscher, A. C., Yanez-Serrano, A. M., Wolff, S., Carioca de Araujo, A., Lavric, J. V., Kesselmeier, J., Williams, J., Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity (2016) Nat. Comm, 7, p. 10383. , https://doi.org/10.1038/ncomms10383; Oomen, G.-M., Müller, J.-F., Stavrakou, T., De Smedt, I., Blumenstock, T., Kivi, R., Makarova, M., Wagner, T., Weekly-derived top-down VOC fluxes over Europe from TROPOMI HCHO data in 2018-2021 (2023) EGUsphere, , https://doi.org/10.5194/egusphere-2023-1972, [preprint]; Novelli, A., Vereecken, L., Bohn, B., Dorn, H.-P., Gkatzelis, G. I., Hofzumahaus, A., Holland, F., Fuchs, H., Importance of isomerization reactions for OH radical regeneration from the photooxidation of isoprene investigated in the atmospheric simulation chamber SAPHIR (2020) Atmos. Chem. Phys, 20, pp. 3333-3355. , https://doi.org/10.5194/acp-20-3333-2020; Opacka, B., Müller, J.-F., Stavrakou, T., Bauwens, M., Sindelarova, K., Markova, J., Guenther, A. B., Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model (2021) Atmos. Chem. Phys, 21, pp. 8413-8436. , https://doi.org/10.5194/acp-21-8413-2021; Palmer, P. I., Jacob, D. J., Fiore, A. M., Martin, R. V., Chance, K., Kurosu, T. P., Mapping isoprene emissions over North America using formaldehyde column observations from space (2003) J. Geophys. Res, 108, p. 4180. , https://doi.org/10.1029/2002JD002153; Palmer, P. I., Abbot, D. S., Fu, T.-M., Jacob, D. J., Chance, K., Kurosu, T. P., Guenther, A., Sumner, A. L., Quantifying the seasonal and interannual variability of North American isoprene emissions using satellite observations of the formaldehyde column (2006) J. Geophys. Res, 111, p. D12315. , https://do.org/:10.1029/2005JD006689; Pan, X., Ichoku, C., Chin, M., Bian, H., Darmenov, A., Colarco, P., Ellison, L., Cui, G., Six global biomass burning emission datasets: intercomparison and application in one global aerosol model (2020) Atmos. Chem. Phys, 20, pp. 969-994. , https://doi.org/10.5194/acp-20-969-2020; Paulot, F., Crounse, J. D., Kjaergaard, H. G., Kürten, A., Clair, J. M., Seinfeld, J. H., andWennberg, P. O., Unexpected epoxide formation in the gas-phase photooxidation of isoprene (2009) Science, 325, pp. 730-733. , https://doi.org/10.1126/science.1172910, St. Clair; Peeters, J., Müller, J.-F., Stavrakou, T., Nguyen, S. V., Hydroxyl radical recycling in isoprene oxidation driven by hydrogen bonding and hydrogen tunneling: the upgraded LIM1 mechanism (2014) J. Phys. Chem. A, 118, pp. 8625-8643. , https://doi.org/10.1021/jp5033146; Pétron, G., Karion, A., Sweeney, C., Miller, B. R., Montzka, S. A., Frost, G. J., Trainer, M., Schnell, R., A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin (2014) J. Geophys. Res, 119, pp. 6836-6852. , https://doi.org/10.1002/2013JD021272; Possell, M., Hewitt, C. N., Isoprene emissions from plants are mediated by atmospheric CO2 concentrations (2011) Glob. Change Biol, 17, pp. 1595-1610. , https://doi.org/10.1111/j.1365-2486.2010.02306.x; Pougatchev, N. S., Connor, B. J., Rinsland, C. P., Infrared measurements of the ozone vertical distribution above Kitt Peak (1995) J. Geophys. Res, 100, pp. 16689-16697. , https://doi.org/10.1029/95JD01296; Read, K. A., Carpenter, L. J., Arnold, S. R., Beale, R., Nightingale, P. D., Hopkins, J. R., Lewis, A. C., Pickering, S. J., Multiannual observations of acetone, methanol, and acetaldehyde in remote Tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity (2012) Envrion. Sci. Technol, 46, pp. 11028-11039. , https://https://doi.org/10.1021/es302082p; Richter, D., Weibring, P., Walega, J. G., Fried, A., Spuler, S. M., Taubman, M. S., Compact highly sensitive multi-species airborne mid-IR spectrometer (2015) Appl. Phys. B, 119, pp. 119-131. , https://doi.org/10.1007/s00340-015-6038-8; Rodgers, C. D., (2000) Inverse methods for atmospheric sounding: theory and practice, , https://api.semanticscholar.org/CorpusID:60696486, World Scientific Publishing, Singapore-New Jersey-London-Hong Kong, ISBN 13 9789810227401, (last access: 19 February 2024); Rodgers, C. D., Connor, B. J., Intercomparison of remote sounding instruments (2003) J. Geophys. Res, 108, p. 4116. , https://doi.org/10.1029/2002JD002299; Rothman, L. S., Gordon, I. E., Babikov, Y., Barbe, A., Chris Benner, D., Bernath, P. F., Birk, M., Wagner, G., The HITRAN2012 molecular spectroscopic database (2013) J. Quant. Spectrosc. Ra, 130, pp. 4-50. , https://doi.org/10.1016/j.jqsrt.2013.07.002; Sanchez, D., Seco, R., Gu, D., Guenther, A., Mak, J., Lee, Y., Kim, D., Kim, S., Contributions to OH reactivity from unexplored volatile organic compounds measured by PTR-ToF-MS-a case study in a suburban forest of the Seoul metropolitan area during the Korea-United States Air Quality Study (KORUS-AQ) 2016 (2021) Atmos. Chem. Phys, 21, pp. 6331-6345. , https://doi.org/10.5194/acp-21-6331-2021; Seinfeld, J., Pandis, S., (1988) Atmospheric chemistry and physics: From air pollution to climate change, p. 1326. , https://doi.org/10.1080/00139157.1999.10544295, edited by: John Wiley and Sons, New York; Sen, P. K., Estimates of the regression coefficient based on Kendall's tau (1968) J. Am. Stat. Assoc, 63, pp. 1379-1389. , https://doi.org/10.2307/2285891; Shim, C., Wang, Y., Choi, Y., Palmer, P. I., Abbot, D. S., Chance, K., Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements (2005) J. Geophys. Res, 110, p. D24301. , https://doi.org/10.1029/2004JD005629; Shu, Y. S., Atkinson, R., Rate constants for the gasphase reactions of O3 with a series of terpenes and OH radical formation from the O3 reactions with sesquiterpenes at 296_2 K (1994) Int. J. Chem. Kin, 26, pp. 1193-1205. , https://doi.org/10.1002/kin.550261207; Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T., Kajos, M. K., Patokoski, J., Hellen, H., Kulmala, M., OH reactivity measurements within a boreal forest: Evidence for unknown reactive emissions (2010) Environ. Sci. Technol, 44, pp. 6614-6620. , https://doi.org/10.1021/es101780b; Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J.-F., Knorr, W., Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years (2014) Atmos. Chem. Phys, 14, pp. 9317-9341. , https://doi.org/10.5194/acp-14-9317-2014; Sofiev, M., Vankevich, R., Ermakova, T., Hakkarainen, J., Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions (2013) Atmos. Chem. Phys, 13, pp. 7039-7052. , https://doi.org/10.5194/acp-13-7039-2013; Spracklen, D. V., Jimenez, J. L., Carslaw, K. S., Worsnop, D. R., Evans, M. J., Mann, G. W., Zhang, Q., Forster, P., Aerosol mass spectrometer constraint on the global secondary organic aerosol budget (2011) Atmos. Chem. Phys, 11, pp. 12109-12136. , https://doi.org/10.5194/acp-11-12109-2011; Spurr, R. J. D., LIDORT and VLIDORT: Linearized pseudospherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems (2008) Light Scattering Reviews, pp. 229-271. , https://doi.org/10.1007/978-3-540-48546-9, edited by: Kokhanovsky, A., Springer, Berlin, Heidelberg; Stavrakou, T., Müller, J.-F., De Smedt, I., Van Roozendael, M., van der Werf, G. R., Giglio, L., Guenther, A., Evaluating the performance of pyrogenic and biogenic emission inventories against one decade of space-based formaldehyde columns (2009) Atmos. Chem. Phys, 9, pp. 1037-1060. , https://doi.org/10.5194/acp-9-1037-2009; Stavrakou, T., Guenther, A., Razavi, A., Clarisse, L., Clerbaux, C., Coheur, P.-F., Hurtmans, D., Müller, J.-F., First space-based derivation of the global atmospheric methanol emission fluxes (2011) Atmos. Chem. Phys, 11, pp. 4873-4898. , https://doi.org/10.5194/acp-11-4873-2011; Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., De Mazière, M., Vigouroux, C., Guenther, A., How consistent are top-down hydrocarbon emissions based on formaldehyde observations from GOME-2 and OMI? (2015) Atmos. Chem. Phys, 15, pp. 11861-11884. , https://doi.org/10.5194/acp-15-11861-2015; Stavrakou, T., Müller, J.-F., Bauwens, M., De Smedt, I., Van Roozendael, M., Guenther, A., Impact of climate variability on volatile organic compounds emissions assessed using OMI formaldehyde observations (2018) Geophys. Res. Lett, 45, pp. 8681-8689. , https://doi.org/10.1029/2018GL078676; Tikhonov, A., Solution of incorrectly formulated problems and the regularization method (1963) Sov. Dok, 4, pp. 1035-1038; Toon, O. B., Maring, H., Dibb, J., Ferrare, R., Jacob, D. J., Jensen, E. J., Luo, Z. J., Pszenny, A., Planning, implementation and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission (2016) J. Geophys. Res.-Atmos, 121, p. 4967. , https://doi.org/10.1002/2015JD024297; Torres, O., Bhartia, P. K., Jethva, H., Ahn, C., Impact of the ozone monitoring instrument row anomaly on the long-term record of aerosol products (2018) Atmos. Meas. Tech, 11, pp. 2701-2715. , https://doi.org/10.5194/amt-11-2701-2018; Travis, K. R., Jacob, D. J., Fisher, J. A., Kim, P. S., Marais, E. A., Zhu, L., Yu, K., Zhou, X., Why do models overestimate surface ozone in the Southeast United States? (2016) Atmos. Chem. Phys, 16, pp. 13561-13577. , https://doi.org/10.5194/acp-16-13561-2016; Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R., Blake, D. R., Brune, W. H., Yu, F., Constraining remote oxidation capacity with ATom observations (2020) Atmos. Chem. Phys, 20, pp. 7753-7781. , https://doi.org/10.5194/acp-20-7753-2020; Tzompa-Sosa, Z. A., Henderson, B. H., Keller, C. A., Travis, K., Mahieu, E., Franco, B., Estes, M., Fischer, E. V., Atmospheric implications of large C2-C5 alkane emissions from the U.S. oil and gas industry (2019) J. Geophys. Res, 124, pp. 1148-1169. , https://doi.org/10.1029/2018JD028955; van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T. T., Chen, Y., Rogers, B. M., Mu, M., Kasibhatla, P. S., Global fire emissions estimates during 1997-2016 (2017) Earth Syst. Sci. Data, 9, pp. 697-720. , https://doi.org/10.5194/essd-9-697-2017; Veefkind, J. P., de Haan, J. F., Sneep, M., Levelt, P. F., Improvements to the OMI O2-O2 operational cloud algorithm and comparisons with ground-based radar-lidar observations (2016) Atmos. Meas. Tech, 9, pp. 6035-6049. , https://doi.org/10.5194/amt-9-6035-2016; Vigouroux, C., Hendrick, F., Stavrakou, T., Dils, B., De Smedt, I., Hermans, C., Merlaud, A., De Mazière, M., Ground-based FTIR and MAX-DOAS observations of formaldehyde at Réunion Island and comparisons with satellite and model data (2009) Atmos. Chem. Phys, 9, pp. 9523-9544. , https://doi.org/10.5194/acp-9-9523-2009; Vigouroux, C., Bauer Aquino, C. A., Bauwens, M., Becker, C., Blumenstock, T., De Mazière, M., García, O., Toon, G., NDACC harmonized formaldehyde time series from 21 FTIR stations covering a wide range of column abundances (2018) Atmos. Meas. Tech, 11, pp. 5049-5073. , https://doi.org/10.5194/amt-11-5049-2018; Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Winkler, H., TROPOMI-Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations (2020) Atmos. Meas. Tech, 13, pp. 3751-3767. , https://doi.org/10.5194/amt-13-3751-2020; Vohra, K., Marais, E. A., Suckra, S., Kramer, L., Bloss, W. J., Sahu, R., Gaur, A., Coheur, P.-F., Long-term trends in air quality in major cities in the UK and India: a view from space (2021) Atmos. Chem. Phys, 21, pp. 6275-6296. , https://doi.org/10.5194/acp-21-6275-2021; Wang, S., Apel, E., Hornbrook, R., Campos, T., Gao, R.-S., Rogers, D., Pierce, B., Volkamer, R., Sources and sinks of OVOCs in the tropical free troposphere during TORERO (2012) AGU Fall meeting, , Poster A51E-0115, San Francisco; Warneke, C., Trainer, M., de Gouw, J. A., Parrish, D. D., Fahey, D. W., Ravishankara, A. R., Middlebrook, A. M., Hatch, C. D., Instrumentation and measurement strategy for the NOAA SENEX aircraft campaign as part of the Southeast Atmosphere Study 2013 (2016) Atmos. Meas. Tech, 9, pp. 3063-3093. , https://doi.org/10.5194/amt-9-3063-2016; Weibring, P., Richter, D., Walega, J. G., Fried, A., First demonstration of a high performance difference frequency spectrometer on airborne platforms (2007) Opt. Express, 15, pp. 13476-13495. , https://doi.org/10.1364/OE.15.013476; Wells, K. C., Millet, D. B., Payne, V. H., Deventer, M. J., Bates, K. H., de Gouw, J. A., Graus, M., Fuentes, J. D., Global measurements of isoprene from space: Constraints on emissions and atmospheric oxidation (2020) Nature, 585, pp. 225-233. , https://doi.org/10.1038/s41586-020-2664-3; Wells, K. C., Millet, D. B., Payne, V. H., Vigouroux, C., Aquino, C. A. B., De Mazière, M., de Gouw, J. A., Wisthaler, A., Next-generation isoprene measurements from space: Quantifying daily variability at high resolution (2022) J. Geophys. Res, 127, p. e2021JD036181. , https://doi.org/10.1029/2021JD036181; Wennberg, P. O., Bates, K. H., Crounse, J. D., Dodson, L. G., Mc-Vay, R., Mertens, L. A., Nguyen, T. B., Seinfeld, J. H., Gas-phase reactions of isoprene and its major oxidation products (2018) Chem. Rev, 118, pp. 3337-3390. , https://doi.org/10.1021/acs.chemrev.7b00439; Williams, J. E., Boersma, K. F., Le Sager, P., Verstraeten, W.W., The high-resolution version of TM5-MP for optimized satellite retrievals: description and validation (2017) Geosci. Model Dev, 10, pp. 721-750. , https://doi.org/10.5194/gmd-10-721-2017; Yang, Y. D., Shao, M., Wang, X. M., Nolscher, A. C., Kessel, S., Guenther, A., Williams, J., Towards a quantitative understanding of total OH reactivity: A review (2016) Atmos. Environ, 134, pp. 147-161. , https://doi.org/10.1016/j.atmosenv.2016.03.010; Yu, H., Guenther, A., Gu, D., Warneke, C., Geron, C., Goldstein, A., Graus, M., Yuan, B., Airborne measurements of isoprene and monoterpene emissions from southeastern U.S. forests (2017) Sci. Total Environ, 595, pp. 149-158. , https://doi.org/10.1016/j.scitotenv.2017.03.262; Yuan, H., Dai, Y., Xiao, Z., Ji, D., Shangguan, W., Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling (2011) Remote Sens. Environ, 115, pp. 1171-1187. , https://doi.org/10.1016/j.rse.2011.01.001; Zhu, L., Jacob, D. J., Kim, P. S., Fisher, J. A., Yu, K., Travis, K. R., Mickley, L. J., Wolfe, G. M., Observing atmospheric formaldehyde (HCHO) from space: validation and intercomparison of six retrievals from four satellites (OMI, GOME2A, GOME2B, OMPS) with SEAC4RS aircraft observations over the southeast US (2016) Atmos. Chem. Phys, 16, pp. 13477-13490. , https://doi.org/10.5194/acp-16-13477-2016; Zhu, L., Mickley, L. J., Jacob, D. J., Marais, E. A., Sheng, J., Hu, L., Gonzalez Abad, G., Chance, K., Long-term (2005-2014) trends in formaldehyde columns across North America as seen by the OMI satellite instrument; Evidence of changing emissions of volatile organic compounds (2017) J. Geophys. Res, 44, pp. 7079-7086. , https://doi.org/10.1002/2017GL073859

PY - 2024/2/22

Y1 - 2024/2/22

N2 - Spaceborne formaldehyde (HCHO) measurements constitute an excellent proxy for the sources of non-methane volatile organic compounds (NMVOCs). Past studies suggested substantial overestimations of NMVOC emissions in state-of-the-art inventories over major source regions. Here, the QA4ECV (Quality Assurance for Essential Climate Variables) retrieval of HCHO columns from OMI (Ozone Monitoring Instrument) is evaluated against (1) FTIR (Fourier-transform infrared) column observations at 26 stations worldwide and (2) aircraft in situ HCHO concentration measurements from campaigns conducted over the USA during 2012-2013. Both validation exercises show that OMI underestimates high columns and overestimates low columns. The linear regression of OMI and aircraft-based columns gives ωOMICombining double low line0.651ωairc+2.95×1015 molec.cm-2, with ωOMI and ωairc the OMI and aircraft-derived vertical columns, whereas the regression of OMI and FTIR data gives ωOMICombining double low line0.659ωFTIR+2.02×1015 molec.cm-2. Inverse modelling of NMVOC emissions with a global model based on OMI columns corrected for biases based on those relationships leads to much-improved agreement against FTIR data and HCHO concentrations from 11 aircraft campaigns. The optimized global isoprene emissions (ĝ1/4445Tgyr-1) are 25% higher than those obtained without bias correction. The optimized isoprene emissions bear both striking similarities and differences with recently published emissions based on spaceborne isoprene columns from the CrIS (Cross-track Infrared Sounder) sensor. Although the interannual variability of OMI HCHO columns is well understood over regions where biogenic emissions are dominant, and the HCHO trends over China and India clearly reflect anthropogenic emission changes, the observed HCHO decline over the southeastern USA remains imperfectly elucidated. © Copyright:

AB - Spaceborne formaldehyde (HCHO) measurements constitute an excellent proxy for the sources of non-methane volatile organic compounds (NMVOCs). Past studies suggested substantial overestimations of NMVOC emissions in state-of-the-art inventories over major source regions. Here, the QA4ECV (Quality Assurance for Essential Climate Variables) retrieval of HCHO columns from OMI (Ozone Monitoring Instrument) is evaluated against (1) FTIR (Fourier-transform infrared) column observations at 26 stations worldwide and (2) aircraft in situ HCHO concentration measurements from campaigns conducted over the USA during 2012-2013. Both validation exercises show that OMI underestimates high columns and overestimates low columns. The linear regression of OMI and aircraft-based columns gives ωOMICombining double low line0.651ωairc+2.95×1015 molec.cm-2, with ωOMI and ωairc the OMI and aircraft-derived vertical columns, whereas the regression of OMI and FTIR data gives ωOMICombining double low line0.659ωFTIR+2.02×1015 molec.cm-2. Inverse modelling of NMVOC emissions with a global model based on OMI columns corrected for biases based on those relationships leads to much-improved agreement against FTIR data and HCHO concentrations from 11 aircraft campaigns. The optimized global isoprene emissions (ĝ1/4445Tgyr-1) are 25% higher than those obtained without bias correction. The optimized isoprene emissions bear both striking similarities and differences with recently published emissions based on spaceborne isoprene columns from the CrIS (Cross-track Infrared Sounder) sensor. Although the interannual variability of OMI HCHO columns is well understood over regions where biogenic emissions are dominant, and the HCHO trends over China and India clearly reflect anthropogenic emission changes, the observed HCHO decline over the southeastern USA remains imperfectly elucidated. © Copyright:

KW - airborne survey

KW - atmospheric pollution

KW - correction

KW - formaldehyde

KW - FTIR spectroscopy

KW - volatile organic compound

KW - United States

UR - https://www.mendeley.com/catalogue/63db05ed-c53b-314d-bce2-e0844cf9d67f/

U2 - 10.5194/acp-24-2207-2024

DO - 10.5194/acp-24-2207-2024

M3 - статья

VL - 24

SP - 2207

EP - 2237

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 4

ER -

ID: 117486890