Standard

Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions. / Bonanno, Claudio; Cappelli, Andrea; Kompaniets, Mikhail; Okuda, Satoshi; Wiese, Kay Jörg.

в: SciPost Physics, Том 14, № 5, 135, 30.05.2023.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Bonanno, C, Cappelli, A, Kompaniets, M, Okuda, S & Wiese, KJ 2023, 'Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions', SciPost Physics, Том. 14, № 5, 135. https://doi.org/10.21468/scipostphys.14.5.135

APA

Bonanno, C., Cappelli, A., Kompaniets, M., Okuda, S., & Wiese, K. J. (2023). Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions. SciPost Physics, 14(5), [135]. https://doi.org/10.21468/scipostphys.14.5.135

Vancouver

Bonanno C, Cappelli A, Kompaniets M, Okuda S, Wiese KJ. Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions. SciPost Physics. 2023 Май 30;14(5). 135. https://doi.org/10.21468/scipostphys.14.5.135

Author

Bonanno, Claudio ; Cappelli, Andrea ; Kompaniets, Mikhail ; Okuda, Satoshi ; Wiese, Kay Jörg. / Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions. в: SciPost Physics. 2023 ; Том 14, № 5.

BibTeX

@article{2fbd39721a0b41db8344cebcaa81199d,
title = "Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions",
abstract = " The Ising critical exponents $\eta$, $\nu$ and $\omega$ are determined up to one-per-thousand relative error in the whole range of dimensions $3 \le d < 4$, using numerical conformal-bootstrap techniques. A detailed comparison is made with results by the resummed epsilon-expansion in varying dimension, the analytic bootstrap, Monte Carlo and non-perturbative renormalization-group methods, finding very good overall agreement. Precise conformal field theory data of scaling dimensions and structure constants are obtained as functions of dimension, improving on earlier findings, and providing benchmarks in $3 \le d < 4$. ",
keywords = "hep-th, cond-mat.stat-mech",
author = "Claudio Bonanno and Andrea Cappelli and Mikhail Kompaniets and Satoshi Okuda and Wiese, {Kay J{\"o}rg}",
note = "43 pages, 44 pdf figures, 7 tables. v2: further data and comments added. v3: published version with better description of boostrap navigator data and resummation techniques",
year = "2023",
month = may,
day = "30",
doi = "10.21468/scipostphys.14.5.135",
language = "English",
volume = "14",
journal = "SciPost Physics",
issn = "2542-4653",
publisher = "SciPost Foundation",
number = "5",

}

RIS

TY - JOUR

T1 - Benchmarking the Ising Universality Class in 3 ≤ d < 4 dimensions

AU - Bonanno, Claudio

AU - Cappelli, Andrea

AU - Kompaniets, Mikhail

AU - Okuda, Satoshi

AU - Wiese, Kay Jörg

N1 - 43 pages, 44 pdf figures, 7 tables. v2: further data and comments added. v3: published version with better description of boostrap navigator data and resummation techniques

PY - 2023/5/30

Y1 - 2023/5/30

N2 - The Ising critical exponents $\eta$, $\nu$ and $\omega$ are determined up to one-per-thousand relative error in the whole range of dimensions $3 \le d < 4$, using numerical conformal-bootstrap techniques. A detailed comparison is made with results by the resummed epsilon-expansion in varying dimension, the analytic bootstrap, Monte Carlo and non-perturbative renormalization-group methods, finding very good overall agreement. Precise conformal field theory data of scaling dimensions and structure constants are obtained as functions of dimension, improving on earlier findings, and providing benchmarks in $3 \le d < 4$.

AB - The Ising critical exponents $\eta$, $\nu$ and $\omega$ are determined up to one-per-thousand relative error in the whole range of dimensions $3 \le d < 4$, using numerical conformal-bootstrap techniques. A detailed comparison is made with results by the resummed epsilon-expansion in varying dimension, the analytic bootstrap, Monte Carlo and non-perturbative renormalization-group methods, finding very good overall agreement. Precise conformal field theory data of scaling dimensions and structure constants are obtained as functions of dimension, improving on earlier findings, and providing benchmarks in $3 \le d < 4$.

KW - hep-th

KW - cond-mat.stat-mech

UR - https://www.mendeley.com/catalogue/d95d5932-a9f8-3c2d-baf4-365501ce65e0/

U2 - 10.21468/scipostphys.14.5.135

DO - 10.21468/scipostphys.14.5.135

M3 - Article

VL - 14

JO - SciPost Physics

JF - SciPost Physics

SN - 2542-4653

IS - 5

M1 - 135

ER -

ID: 106812776