Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge-Ampere boundary-value problem on a parabolic plane domain. Furthermore, we elaborate an essentially geometric algorithm for solving this boundary-value problem. This algorithm produces the exact Bellman function of the problem along with the optimizers in the inequalities being proved. The method presented subsumes several previous Bellman-function results for BMO, including the sharp John-Nirenberg inequality and sharp estimates of L-p-norms of BMO functions.
Язык оригинала | Английский |
---|---|
Страницы (с-по) | 3415-3468 |
Число страниц | 54 |
Журнал | Transactions of the American Mathematical Society |
Том | 368 |
Номер выпуска | 5 |
DOI | |
Состояние | Опубликовано - мая 2016 |
ID: 7581894