Ссылки

DOI

We develop a general method for obtaining sharp integral estimates on BMO. Each such estimate gives rise to a Bellman function, and we show that for a large class of integral functionals, this function is a solution of a homogeneous Monge-Ampere boundary-value problem on a parabolic plane domain. Furthermore, we elaborate an essentially geometric algorithm for solving this boundary-value problem. This algorithm produces the exact Bellman function of the problem along with the optimizers in the inequalities being proved. The method presented subsumes several previous Bellman-function results for BMO, including the sharp John-Nirenberg inequality and sharp estimates of L-p-norms of BMO functions.

Язык оригиналаАнглийский
Страницы (с-по)3415-3468
Число страниц54
ЖурналTransactions of the American Mathematical Society
Том368
Номер выпуска5
DOI
СостояниеОпубликовано - мая 2016

ID: 7581894