DOI

In this paper, we explore the problem of automatic recognition of psychoneurological states: Autism Spectrum Disorders, Down Syndrome, Typical Development of 7–10 years old children from their speech in the Russian language. We described the results of fully automatic recognition based on our proprietary speech dataset. Along with SVM, we used the ComParE features from Computational Paralinguistic Challenges. The results on our dataset showed high performance of automated recognition of psychoneurological states of 7–10 years old children from their speech. The results are theoretically and practically valuable, they will expand the knowledge about human voice uniqueness, possibilities of diagnostics of human psychoneurological states by voice and speech features, and creation of alternative communicative systems.

Язык оригиналаанглийский
Название основной публикацииSpeech and Computer - 23rd International Conference, SPECOM 2021, Proceedings
РедакторыAlexey Karpov, Rodmonga Potapova
ИздательSpringer Nature
Страницы417-425
Число страниц9
Том12997
ISBN (печатное издание)9783030878016
DOI
СостояниеОпубликовано - окт 2021
Событие23rd International Conference on Speech and Computer - Virtual, Online, Российская Федерация
Продолжительность: 27 сен 202130 сен 2021
Номер конференции: 23
http://specom.nw.ru/2021/

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том12997 LNAI
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция23rd International Conference on Speech and Computer
Сокращенное названиеSPECOM 2021
Страна/TерриторияРоссийская Федерация
ГородVirtual, Online
Период27/09/2130/09/21
Сайт в сети Internet

    Предметные области Scopus

  • Теоретические компьютерные науки
  • Компьютерные науки (все)

ID: 87318380