DOI

The detection of anomalies in time series is a critical task across various domains including time series generated by a diversity of distributed systems. Despite extensive research, no single algorithm is the undisputed leader in all respects. This paper introduces KDEAE, a novel unsupervised approach for univariate time series anomaly detection. This method combines autoencoders (AE) and kernel density estimation (KDE). The proposed approach segments time series into non-overlapping segments, encodes them using convolutional AE and constructs anomaly scores based on their density obtained from KDE. The method is evaluated on GutenTAG dataset collection using TimeEval framework and compared with 25 algorithms of the same category. The results show that KDEAE outperform 40% algorithms by ROC AUC and 60% by PR AUC scores and 60% by runtime. The paper concludes with suggestions for further research to enhance the method's performance and extend it to multivariate time series.
Язык оригиналаанглийский
Название основной публикацииComputational Science and Its Applications – ICCSA 2025 Workshops
Страницы249–263
Число страниц15
DOI
СостояниеОпубликовано - 28 июн 2025
Событие25th International Conference on Computational Science and Its Applications, ICCSA 2025 - Стамбул, Турция
Продолжительность: 30 июн 20253 июл 2025
http://iccsa.org

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ИздательSpringer Nature
Том15894
ISSN (печатное издание)0302-9743

конференция

конференция25th International Conference on Computational Science and Its Applications, ICCSA 2025
Сокращенное названиеICCSA
Страна/TерриторияТурция
ГородСтамбул
Период30/06/253/07/25
Сайт в сети Internet

ID: 138833380