Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Auroral streamers : Characteristics of associated precipitation, convection and field-aligned currents. / Sergeev, V. A.; Liou, K.; Newell, P. T.; Ohtani, S. I.; Hairston, M. R.; Rich, F.
в: Annales Geophysicae, Том 22, № 2, 01.01.2004, стр. 537-548.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Auroral streamers
T2 - Characteristics of associated precipitation, convection and field-aligned currents
AU - Sergeev, V. A.
AU - Liou, K.
AU - Newell, P. T.
AU - Ohtani, S. I.
AU - Hairston, M. R.
AU - Rich, F.
PY - 2004/1/1
Y1 - 2004/1/1
N2 - During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned) accelerated electron precipitation coincides with the strong (≥ 2-7 μ A/m2) upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows) which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5-1 km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.
AB - During the long-duration steady convection activity on 11 December 1998, the development of a few dozen auroral streamers was monitored by Polar UVI instrument in the dark northern nightside ionosphere. On many occasions the DMSP spacecraft crossed the streamer-conjugate regions over the sunlit southern auroral oval, permitting the investigation of the characteristics of ion and electron precipitation, ionospheric convection and field-aligned currents associated with the streamers. We confirm the conjugacy of streamer-associated precipitation, as well as their association with ionospheric plasma streams having a substantial equatorward convection component. The observations display two basic types of streamer-associated precipitation. In its polewardmost half, the streamer-associated (field-aligned) accelerated electron precipitation coincides with the strong (≥ 2-7 μ A/m2) upward field-aligned currents on the westward flank of the convection stream, sometimes accompanied by enhanced proton precipitation in the adjacent region. In the equatorward portion of the streamer, the enhanced precipitation includes both electrons and protons, often without indication of field-aligned acceleration. Most of these characteristics are consistent with the model describing the generation of the streamer by the narrow plasma bubbles (bursty bulk flows) which are contained on dipolarized field lines in the plasma sheet, although the mapping is strongly distorted which makes it difficult to quantitatively interprete the ionospheric image. The convective streams in the ionosphere, when well-resolved, had the maximal convection speeds ∼0.5-1 km/s, total field-aligned currents of a few tenths of MA, thicknesses of a few hundreds km and a potential drop of a few kV across the stream. However, this might represent only a small part of the associated flux transport in the equatorial plasma sheet.
KW - Ionosphere (electric fiels and currents)
KW - Magnetospheric physics (aurroal phenomena; energetic particles, precipitating)
UR - http://www.scopus.com/inward/record.url?scp=1342310026&partnerID=8YFLogxK
U2 - 10.5194/angeo-22-537-2004
DO - 10.5194/angeo-22-537-2004
M3 - Article
AN - SCOPUS:1342310026
VL - 22
SP - 537
EP - 548
JO - Annales Geophysicae
JF - Annales Geophysicae
SN - 0992-7689
IS - 2
ER -
ID: 36930321