Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Atomic Structure and Dynamics of Unusual and Wide‐Gap Phase‐Change Chalcogenides: A GeTe2 Case. / Usuki, Takeshi; Benmore, Chris J.; Tverjanovich, Andrey; Bereznev, Sergei; Khomenko, Maxim; Sokolov, Anton; Fontanari, Daniele; Ohara, Koji; Bokova, Maria; Kassem, Mohammad; Bychkov, Eugene.
в: Physica Status Solidi - Rapid Research Letetrs, Том 18, № 10, 2300482, 01.10.2024.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Atomic Structure and Dynamics of Unusual and Wide‐Gap Phase‐Change Chalcogenides: A GeTe2 Case
AU - Usuki, Takeshi
AU - Benmore, Chris J.
AU - Tverjanovich, Andrey
AU - Bereznev, Sergei
AU - Khomenko, Maxim
AU - Sokolov, Anton
AU - Fontanari, Daniele
AU - Ohara, Koji
AU - Bokova, Maria
AU - Kassem, Mohammad
AU - Bychkov, Eugene
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Brain-inspired computing, reconfigurable optical metamaterials, photonic tensor cores, and many other advanced applications require next-generation phase-change materials (PCMs) with better energy efficiency and a wider thermal and spectral range for reliable operations. Germanium ditelluride (GeTe2), with higher thermal stability and a larger bandgap compared to current benchmark PCMs, appears promising for THz metasurfaces and the controlled crystallization of atomically thin 2D materials. Using high-energy X-Ray diffraction supported by first-principles simulation, the atomic structure in semiconducting pulsed laser deposition films and metallic high-temperature liquids is investigated. The results suggest that the structural and chemical metastability of GeTe2, leading to disproportionation into GeTe and Te, is related to high internal pressure during a semiconductor–metal transition, presumably occurring in the supercooled melt. Similar phenomena are expected for canonical GeS2 and GeSe2 under high temperatures and pressures.
AB - Brain-inspired computing, reconfigurable optical metamaterials, photonic tensor cores, and many other advanced applications require next-generation phase-change materials (PCMs) with better energy efficiency and a wider thermal and spectral range for reliable operations. Germanium ditelluride (GeTe2), with higher thermal stability and a larger bandgap compared to current benchmark PCMs, appears promising for THz metasurfaces and the controlled crystallization of atomically thin 2D materials. Using high-energy X-Ray diffraction supported by first-principles simulation, the atomic structure in semiconducting pulsed laser deposition films and metallic high-temperature liquids is investigated. The results suggest that the structural and chemical metastability of GeTe2, leading to disproportionation into GeTe and Te, is related to high internal pressure during a semiconductor–metal transition, presumably occurring in the supercooled melt. Similar phenomena are expected for canonical GeS2 and GeSe2 under high temperatures and pressures.
KW - atomic structures
KW - phase-change materials
KW - semiconductor–metal transition | viscosities
UR - https://www.mendeley.com/catalogue/ad6c0477-a618-36de-988b-7aae19d4f5dc/
U2 - 10.1002/pssr.202300482
DO - 10.1002/pssr.202300482
M3 - Article
VL - 18
JO - Physica Status Solidi - Rapid Research Letetrs
JF - Physica Status Solidi - Rapid Research Letetrs
SN - 1862-6254
IS - 10
M1 - 2300482
ER -
ID: 116730528