DOI

This paper contains two results on the asymptotic behavior of uniform probability measure on partitions of a finite set as its cardinality tends to infinity. The first one states that there exists a normalization of the corresponding Young diagrams such that the induced measure has a weak limit. This limit is shown to be a δ-measure supported by the unit square (Theorem 1). It implies that the majority of partition blocks have approximately the same length. Theorem 2 clarifies the limit distribution of these blocks. The techniques used can also be useful for deriving a range of analogous results.

Язык оригиналаанглийский
Страницы (с-по)4124-4137
Число страниц14
ЖурналJournal of Mathematical Sciences
Том87
Номер выпуска6
DOI
СостояниеОпубликовано - 1 янв 1997

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 32734796