Standard

Asymptotics and Estimates for the Discrete Spectrum of the Schrodinger Operator ¨ on a Discrete Periodic Graph. / KOROTYAEV, E. L.; SLOUSHCH, V. A.

в: St. Petersburg Mathematical Journal, Том 32, № 1, 11.01.2021, стр. 9-29.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

BibTeX

@article{71f77f14a6d049afa2d20a227ba9bf6b,
title = "Asymptotics and Estimates for the Discrete Spectrum of the Schrodinger Operator ¨ on a Discrete Periodic Graph",
abstract = "The periodic Schr¨odinger operator H on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator H±(t) = H±tV, t > 0, where V ≥ 0 is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator H±(t) for a large coupling constant",
author = "KOROTYAEV, {E. L.} and SLOUSHCH, {V. A.}",
note = "Publisher Copyright: {\textcopyright} 2021. All Rights Reserved.",
year = "2021",
month = jan,
day = "11",
doi = "10.1090/SPMJ/1635",
language = "English",
volume = "32",
pages = "9--29",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "1",

}

RIS

TY - JOUR

T1 - Asymptotics and Estimates for the Discrete Spectrum of the Schrodinger Operator ¨ on a Discrete Periodic Graph

AU - KOROTYAEV, E. L.

AU - SLOUSHCH, V. A.

N1 - Publisher Copyright: © 2021. All Rights Reserved.

PY - 2021/1/11

Y1 - 2021/1/11

N2 - The periodic Schr¨odinger operator H on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator H±(t) = H±tV, t > 0, where V ≥ 0 is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator H±(t) for a large coupling constant

AB - The periodic Schr¨odinger operator H on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator H±(t) = H±tV, t > 0, where V ≥ 0 is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator H±(t) for a large coupling constant

UR - http://www.scopus.com/inward/record.url?scp=85100039019&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/1b0ab837-da9d-3923-a29f-c74bebb6db69/

U2 - 10.1090/SPMJ/1635

DO - 10.1090/SPMJ/1635

M3 - Article

AN - SCOPUS:85100039019

VL - 32

SP - 9

EP - 29

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 1

ER -

ID: 86154601