Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Asymptotics and Estimates for the Discrete Spectrum of the Schrodinger Operator ¨ on a Discrete Periodic Graph. / KOROTYAEV, E. L.; SLOUSHCH, V. A.
в: St. Petersburg Mathematical Journal, Том 32, № 1, 11.01.2021, стр. 9-29.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Asymptotics and Estimates for the Discrete Spectrum of the Schrodinger Operator ¨ on a Discrete Periodic Graph
AU - KOROTYAEV, E. L.
AU - SLOUSHCH, V. A.
N1 - Publisher Copyright: © 2021. All Rights Reserved.
PY - 2021/1/11
Y1 - 2021/1/11
N2 - The periodic Schr¨odinger operator H on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator H±(t) = H±tV, t > 0, where V ≥ 0 is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator H±(t) for a large coupling constant
AB - The periodic Schr¨odinger operator H on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator H±(t) = H±tV, t > 0, where V ≥ 0 is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator H±(t) for a large coupling constant
UR - http://www.scopus.com/inward/record.url?scp=85100039019&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/1b0ab837-da9d-3923-a29f-c74bebb6db69/
U2 - 10.1090/SPMJ/1635
DO - 10.1090/SPMJ/1635
M3 - Article
AN - SCOPUS:85100039019
VL - 32
SP - 9
EP - 29
JO - St. Petersburg Mathematical Journal
JF - St. Petersburg Mathematical Journal
SN - 1061-0022
IS - 1
ER -
ID: 86154601