Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We consider a deconvolution problem with a random noise. The noise is a product of a Gaussian stationary random process by a weight function εh ∈ L2(R1) with constant ε > 0. We study the asymptotically minimax and Bayes settings (ε → 0). In the minimax model a priori information is given that the solution belongs to a ball in Sobolev space W2β(R1). For such a priori information we find an asymptotically minimax estimator of the solution. In the Bayes setting the noise is the same. The solution is a realization of a random process defined as a product of a Gaussian stationary random process by a weight function h1 ∈ L2(R1). We show that the standard Wiener filters remain asymptotically Bayes estimators for this modification of Wiener filtration. The introduction of weight functions h, h1 ∈ L2(R1) is the main difference from the standard settings. This allows us not to make the traditional assumptions that the powers of noise and solutions are infinite or tend to infinity.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 1339-1359 |
| Число страниц | 21 |
| Журнал | Inverse Problems |
| Том | 19 |
| Номер выпуска | 6 |
| DOI | |
| Состояние | Опубликовано - дек 2003 |
ID: 71602260