Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Asymptotically Efficient Importance Sampling for Bootstrap. / Ermakov, M. S.
в: Journal of Mathematical Sciences (United States), Том 214, № 4, 01.04.2016, стр. 474-483.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Asymptotically Efficient Importance Sampling for Bootstrap
AU - Ermakov, M. S.
N1 - Publisher Copyright: © 2016, Springer Science+Business Media New York. Copyright: Copyright 2016 Elsevier B.V., All rights reserved.
PY - 2016/4/1
Y1 - 2016/4/1
N2 - The Large Deviation Principle is proved for the conditional probabilities of moderate deviations of weighted empirical bootstrap measures with respect to a fixed empirical measure. Using this LDP for the problem of calculation of moderate deviation probabilities of differentiable statistical functionals, it is shown that the importance sampling based on influence function is asymptotically efficient.
AB - The Large Deviation Principle is proved for the conditional probabilities of moderate deviations of weighted empirical bootstrap measures with respect to a fixed empirical measure. Using this LDP for the problem of calculation of moderate deviation probabilities of differentiable statistical functionals, it is shown that the importance sampling based on influence function is asymptotically efficient.
UR - http://www.scopus.com/inward/record.url?scp=84961182206&partnerID=8YFLogxK
U2 - 10.1007/s10958-016-2791-4
DO - 10.1007/s10958-016-2791-4
M3 - Article
AN - SCOPUS:84961182206
VL - 214
SP - 474
EP - 483
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 4
ER -
ID: 71601433