DOI

In the first of the series of papers by Ivanov et al. it was shown that the model problem of the transfer of polarized radiation as a result of resonance scattering from two-level atoms in a homogeneous plane atmosphere in the absence of LTE comes down, in the approximation of complete frequency redistribution, to the solution of an integral matrix equation of the Wiener-Hopf type for a (2 × 2) matrix source function S(τ). In the second paper in this series, devoted to the vector Milne problem, complete asymptotic expansions of the matrix I(z) [which is essentially a Laplace transform of the matrix S(τ)] for the case of a Doppler profile of the coefficient of absorption, and the coefficients of asymptotic expansions of S(τ) (τ ≫ 1) are expressed in terms of coefficients of the expansions of I(z). We show that asymptotic expansions of S(τ) can be found directly from an integral matrix equation of the Wiener-Hopf type for S(τ). We give new recursive equations for the coefficients of these expansions, as well as a new derivation of asymptotic expansions of the matrix I, including its second column, which was considered only briefly by Ivanov et al.

Язык оригиналаанглийский
Страницы (с-по)70-86
Число страниц17
ЖурналAstrophysics
Том43
Номер выпуска1
DOI
СостояниеОпубликовано - 2000

    Предметные области Scopus

  • Астрономия и астрофизика

ID: 74196053