A flow of viscous incompressible fluid in a domain Ωεdepending on a small parameter ε is considered. The domain Ωε is the union of a domain Ω0 with piecewise smooth baundary and thin channels with width of order ε. Every channel contains one angle point of the domain Ω0 near the channel's inlet. We prove the existence of a solution (vε, pε) to the Navier-Stokes system such that in a neighbourhood of an angle point of the domain Ω0 the pair (vε, pε) is equal, up to a term with finite kinetic energy, to the Jeffery-Hamel solution which describes a plane viscous source (or sink) flow between the sides of the angle. In the channels the pair (vε, pε) asymptotically coincides with the Poiseuille solution. Asymptotic expressions for the kinetic energy and the Dirichlet integral of (vε, pε) are obtained.

Язык оригиналаанглийский
Страницы (с-по)59-89
Число страниц31
ЖурналAsymptotic Analysis
Том23
Номер выпуска1
СостояниеОпубликовано - 1 мая 2000

    Предметные области Scopus

  • Математика (все)

ID: 40981244