DOI

We propose a novel end-to-end Aspect-based Rating Prediction model (AspeRa) that estimates user rating based on review texts for the items and at the same time discovers coherent aspects of reviews that can be used to explain predictions or profile users. The AspeRa model uses max-margin losses for joint item and user embedding learning and a dual-headed architecture; it significantly outperforms recently proposed state-of-the-art models such as DeepCoNN, HFT, NARRE, and TransRev on two real world data sets of user reviews. With qualitative examination of the aspects and quantitative evaluation of rating prediction models based on these aspects, we show how aspect embeddings can be used in a recommender system.

Язык оригиналаанглийский
Название основной публикацииAdvances in Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Proceedings
РедакторыPhilipp Mayr, Claudia Hauff, Benno Stein, Norbert Fuhr, Leif Azzopardi, Djoerd Hiemstra
ИздательSpringer Nature
Страницы163-171
Число страниц9
ISBN (печатное издание)9783030157180
DOI
СостояниеОпубликовано - 2019
Событие41st European Conference on Information Retrieval, ECIR 2019 - Cologne, Германия
Продолжительность: 14 апр 201918 апр 2019

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том11438 LNCS
ISSN (печатное издание)0302-9743
ISSN (электронное издание)1611-3349

конференция

конференция41st European Conference on Information Retrieval, ECIR 2019
Страна/TерриторияГермания
ГородCologne
Период14/04/1918/04/19

    Области исследований

  • information retrieval, machine learning, deep learning, aspect extraction, recommender systems, rating prediction

    Предметные области Scopus

  • Компьютерные науки (все)
  • Прикладные компьютерные науки

ID: 95167795