DOI

In a thin isotropic homogeneous three-dimensional plate of thickness h, we consider the limit passage of elastic fields as h → +0. It is assumed that the connected component ΓNof the boundary of the median cross section ω is a broken line with links of length ah, where a > 0 is a fixed parameter. We consider the Lamé equations with the Neumann condition (a free surface) on the plate bases, the Dirichlet condition (a rigidly clamped surface) on a smooth part, and some linear contact conditions on a ribbed part of the lateral surface. For the solution to the boundary value problem we obtain an asymptotic expansion with different boundary layers. In the two-dimensional model, new boundary conditions, different from the contact ones, arise on the limit smooth contour Γ0, thereby for the spatial elasticity problem, we confirm the Babuška paradox caused by linear boundary conditions on the plate edge, but not unilateral constraints of Signorini type. Bibliography: 42 titles. Illustrations: 5 figures.

Язык оригиналаанглийский
Страницы (с-по)399-428
Число страниц30
ЖурналJournal of Mathematical Sciences (United States)
Том210
Номер выпуска4
Дата раннего онлайн-доступа21 сен 2015
DOI
СостояниеОпубликовано - 2015

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 41040409