Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
We study approximation properties of additive random fields Y d(t),t∈[0,1] d, d∈N, which are sums of d uncorrelated zero-mean random processes with continuous covariance functions. The average case approximation complexity n Y d (ε) is defined as the minimal number of evaluations of arbitrary linear functionals needed to approximate Y d, with relative 2-average error not exceeding a given threshold ε∈(0,1). We investigate the growth of n Y d (ε) for arbitrary fixed ε∈(0,1) and d→∞. The results are applied to the sums of the Wiener processes with different variance parameters.
Язык оригинала | английский |
---|---|
Номер статьи | 101399 |
Журнал | Journal of Complexity |
Том | 54 |
Дата раннего онлайн-доступа | 28 фев 2019 |
DOI | |
Состояние | Опубликовано - окт 2019 |
ID: 42683137