DOI

For a continuous function $ \varphi (\lambda )$, $ \lambda \in \mathbb{R}$, with compact support, a bounded function $ W(x)$, $ x\in \mathbb{R}^{d}$, with power-like asymptotics at infinity, and a suitable selfadjoint operator $ H$ in $ L_{2}({\mathbb{R}}^{d})$, estimates for the singular values of the operator $ \varphi (H)W-W\varphi (H)$ are considered. It is proved that the singular values of $ \varphi (H)W-W\varphi (H)$ decay faster than those of $ \varphi (H)W$. A relationship between the singular values asymptotics for the operators $ \varphi (H)W$ and $ \varphi ^{n}(H)W^{n}$ is also established. - See more at: http://www.ams.org/journals/spmj/2015-26-05/S1061-0022-2015-01362-9/#sthash.QmnAJspJ.dpuf
Язык оригиналаанглийский
Страницы (с-по)849-857
ЖурналSt. Petersburg Mathematical Journal
Том26
Номер выпуска5
DOI
СостояниеОпубликовано - 2015

ID: 3978231