DOI

In this paper we show that generic dynamical systems have a weak shadowing property, namely that for a generic dynamical system φ, in the space of discrete continuous dynamical systems on a compact manifold M with the usual C0 topology, given ε{lunate} > 0, there exists a δ > 0 such that δ-trajectories are ε{lunate}-close to real trajectories. There are no dimensional restrictions on this result. We also give some results on the "inverse" problem of tracing real trajectories by δ-trajectories. These problems are motivated by questions regarding the validity of numerical solutions of differential equations.

Язык оригиналаанглийский
Страницы (с-по)409-423
Число страниц15
ЖурналJournal of Mathematical Analysis and Applications
Том189
Номер выпуска2
DOI
СостояниеОпубликовано - 15 янв 1995

    Предметные области Scopus

  • Анализ
  • Прикладная математика

ID: 92249740