DOI

In current times, malefactors chances to succeed in performing a social engineering attack on company usually depends on how much personal information about employees he owns. Thus, search and analysis of public information about company’s employees from social network websites with purpose of protection company from malicious actions is important issue. This article is devoted to methods of identifying user’s online footprint in website of social network VK.com. Prototype of the tool for identifying employees public pages using binary decision trees as classifier is presented. Approach to fully automated gathering of training dataset is described.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 2nd International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2017
РедакторыSergey Kovalev, Andrey Sukhanov, Margreta Vasileva, Valery Tarassov, Vaclav Snasel, Ajith Abraham
ИздательSpringer Nature
Страницы441-447
Число страниц7
ISBN (печатное издание)9783319683201
DOI
СостояниеОпубликовано - 1 янв 2018
Событие2nd International Conference on Intelligent Information Technologies for Industry, IITI 2017 - Varna, Болгария
Продолжительность: 14 сен 201716 сен 2017

Серия публикаций

НазваниеAdvances in Intelligent Systems and Computing
Том679
ISSN (печатное издание)2194-5357

конференция

конференция2nd International Conference on Intelligent Information Technologies for Industry, IITI 2017
Страна/TерриторияБолгария
ГородVarna
Период14/09/1716/09/17

    Области исследований

  • Social engineering attacks, User protection, Information security, User’s vulnerabilities profile, Social networks

    Предметные области Scopus

  • Системотехника
  • Компьютерные науки (все)

ID: 36751974