Документы

DOI

The paper proposes a methodology for solving the task of accurate semantic classification of 3D data using a combination of 2D and 3D methods based on the YOLO detector and the modified DGCNN network. The methodology is tested on the example of the problem of classification of large-scale geospatial objects, such as digital relief models of archaeological sites. A method for accurate registration of objects (FCIP) in the class of affine transformations using geometric and color features was proposed. The results of computer modeling of the proposed methodology based on FICP+DGCNN*+YOLO were presented and discussed. The methodology has theoretical and applied significance not only for the decryption and research of archaeological sites, but also for many applications of digital information processing and robotics in general.
Язык оригиналаанглийский
Название основной публикацииAnalysis of Images, Social Networks and Texts (AIST 2023)
ИздательSpringer Nature
Страницы294-308
Число страниц15
ISBN (электронное издание)978-3-031-54534-4
ISBN (печатное издание)978-3-031-54533-7
DOI
СостояниеОпубликовано - 12 мар 2024
Опубликовано для внешнего пользованияДа
Событие11th International Conference on Analysis of Images, Social Networks and Texts, AIST 2023 - Ереван, Армения
Продолжительность: 28 сен 202330 сен 2023
https://2023.aistconf.org/program/program/

Серия публикаций

НазваниеLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Том14486 LNCS

конференция

конференция11th International Conference on Analysis of Images, Social Networks and Texts, AIST 2023
Страна/TерриторияАрмения
ГородЕреван
Период28/09/2330/09/23
Сайт в сети Internet

ID: 124116723