Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Tailorable synthesis of axially heterostructured epitaxial nanowires (NWs) with a proper choice of materials allows for the fabrication of novel photonic devices, such as a nanoemitter in the resonant cavity. An example of the structure is a GaP nanowire with ternary GaPAs insertions in the form of nano-sized discs studied in this work. With the use of the micro-photoluminescence technique and numerical calculations, we experimentally and theoretically study photoluminescence emission in individual heterostructured NWs. Due to the high refractive index and near-zero absorption through the emission band, the photoluminescence signal tends to couple into the nanowire cavity acting as a Fabry–Perot resonator, while weak radiation propagating perpendicular to the nanowire axis is registered in the vicinity of each nano-sized disc. Thus, within the heterostructured nanowire, both amplitude and spectrally anisotropic photoluminescent signals can be achieved. Numerical modeling of the nanowire with insertions emitting in infrared demonstrates a decay in the emission directivity and simultaneous rise of the emitters coupling with an increase in the wavelength. The emergence of modulated and non-modulated radiation is discussed, and possible nanophotonic applications are considered.
Язык оригинала | английский |
---|---|
Номер статьи | 241 |
Журнал | Nanomaterials |
Том | 12 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 13 янв 2022 |
ID: 96850051