Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Analysis of Standard Clustering Algorithms for Grouping MEDLINE Abstracts into Evidence-Based Medicine Intervention Categories. / Dobrynin, Vladimir; Balykina, Yulia; Kamalov, Michael.
2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP). ред. / LA Petrosyan; AP Zhabko. Institute of Electrical and Electronics Engineers Inc., 2015. стр. 555-557.Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
}
TY - GEN
T1 - Analysis of Standard Clustering Algorithms for Grouping MEDLINE Abstracts into Evidence-Based Medicine Intervention Categories
AU - Dobrynin, Vladimir
AU - Balykina, Yulia
AU - Kamalov, Michael
PY - 2015
Y1 - 2015
N2 - The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K- means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K- means++ together with LSA then 210- dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.
AB - The paper describes a process of clustering of article abstracts, taken from the largest bibliographic life sciences and biomedical information MEDLINE database into categories that correspond to types of medical interventions - types of patient treatments. Experiments were carried out to evaluate the quality of clustering for the following algorithms: K-means; K- means++; Hierarchical clustering, SIB (Sequential information bottleneck) together with the LSA (Latent Semantic Analysis) methods and MI (Mutual Information) which allow selecting feature vectors. Best results of clustering were achieved by K- means++ together with LSA then 210- dimensional space was chosen: Purity = 0.5719, Entropy = 1.3841, Normalized Entropy = 0.6299.
U2 - 10.1109/SCP.2015.7342223
DO - 10.1109/SCP.2015.7342223
M3 - статья в сборнике материалов конференции
SN - 9781467376983
SP - 555
EP - 557
BT - 2015 INTERNATIONAL CONFERENCE "STABILITY AND CONTROL PROCESSES" IN MEMORY OF V.I. ZUBOV (SCP)
A2 - Petrosyan, LA
A2 - Zhabko, AP
PB - Institute of Electrical and Electronics Engineers Inc.
Y2 - 5 October 2015 through 9 October 2015
ER -
ID: 3983135