DOI

  • D. Langmayr
  • N. V. Erkaev
  • V. S. Semenov
  • W. Macher
  • H. K. Biernat
  • H. O. Rucker

It is well known that in contrast to the Alfvén wave, which is propagating strictly along the direction of the magnetic field, a slow mode wave shows a deviation from the ambient magnetic field. This deviation is determined by the dispersion equation for the slow mode wave. With the help of this dispersion equation we present a theoretical study of the spatial and temporal evolution of an initial pressure disturbance in a homogeneous and constant background magnetic field. The main factor determining the amount of the deviation is the so-called plasma beta, i.e., the ratio of magnetic to thermal energy, which is investigated quantitatively. We obtain that for a low beta plasma, the disturbance propagates more or less strictly along the magnetic field. However, for increasing beta the disturbances across the magnetic field gets stronger. These results can be applied to magnetospheric phenomena, where slow shocks may play a role as a kind of energy carrier as in the case of the Io-Jupiter interaction or magnetic field line reconnection.

Язык оригиналаанглийский
Страницы (с-по)780-783
Число страниц4
ЖурналAdvances in Space Research
Том33
Номер выпуска5
DOI
СостояниеОпубликовано - 1 янв 2004

    Предметные области Scopus

  • Астрономия и астрофизика
  • Геофизика
  • Космические науки и планетоведение
  • Планетоведение и науки о земле (все)

ID: 53084187