Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An analog of the Riesz interpolation formula is established. It allows us to obtain a sharp estimate for the first order derivative of a spline of minimal defect with equidistant knots jπσ,j∈ℤ, in terms of the first order difference in the integral metric. Moreover, the constructed identity makes it possible to strengthen the inequality by replacing its right-hand side with a linear combination of differences, including higher order differences, of the spline. In the case of the difference step πσ, iterations of this identity lead to formulas analogous to the Riesz formula for higher order derivatives and differences; this allows us to obtain Riesz and Bernstein type inequalities for them, also in a stronger form.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 215-226 |
Число страниц | 12 |
Журнал | Journal of Mathematical Sciences (United States) |
Том | 251 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 22 окт 2020 |
ID: 72082127