A novel ultra-high-entropy rare earth orthoferrite (UHE REO) of Sc1/16Y1/16La1/16Ce1/16Pr1/16
Nd1/16Sm1/16Eu1/16Gd1/16Tb1/16Dy1/16Ho1/16Er1/16Tm1/16Yb1/16Lu1/16FeO3 nominal composition was successfully synthesized for the first time through a simple and efficient solution combustion approach.
PXRD, Raman, and 57Fe Mössbauer spectroscopy confirmed the high chemical and phase purity of the synthesized UHE REO (hereafter denoted as ΣREFeO3), which belonged to the Pnma space group, typical of the
perovskite-like rare earth orthoferrites. Despite the fact that the main X-ray reflections, vibration modes, and
spectral Mössbauer components unambiguously indicate the single-phase nature of the sample, the results of
SEM and TEM make it possible to establish the presence of a main (about 50 nm) and a minor ultrafine (about
10 nm) fraction of ΣREFeO3 nanoparticles. The bimodal size distribution of nanoparticles was also reflected in
the magnetic behavior of this substance: the presence of several sextet components in the Mössbauer
spectra, the hard single-domain magnetic nature of the main fraction of 50 nm UHE REO nanoparticles, and
the superparamagnetic state of the minor fraction of 10 nm UHE REO nanoparticles. Thus, the unusual features of nanostructured ΣREFeO3 can potentially be used for the creation of new generations of transformers,
magnetic memory systems, magnetic screens, radio devices, etc