Standard

An inequality for a periodic uncertainty constant. / Lebedeva, E.A.

в: Applied and Computational Harmonic Analysis, Том 42, № 3, 05.2017, стр. 536-549.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Lebedeva, EA 2017, 'An inequality for a periodic uncertainty constant', Applied and Computational Harmonic Analysis, Том. 42, № 3, стр. 536-549. https://doi.org/10.1016/j.acha.2015.12.003

APA

Lebedeva, E. A. (2017). An inequality for a periodic uncertainty constant. Applied and Computational Harmonic Analysis, 42(3), 536-549. https://doi.org/10.1016/j.acha.2015.12.003

Vancouver

Lebedeva EA. An inequality for a periodic uncertainty constant. Applied and Computational Harmonic Analysis. 2017 Май;42(3):536-549. https://doi.org/10.1016/j.acha.2015.12.003

Author

Lebedeva, E.A. / An inequality for a periodic uncertainty constant. в: Applied and Computational Harmonic Analysis. 2017 ; Том 42, № 3. стр. 536-549.

BibTeX

@article{84404efa12864e30a0e8b2a198d6e5a3,
title = "An inequality for a periodic uncertainty constant",
abstract = "An inequality refining the lower bound for a periodic (Breitenberger) uncertainty constant is proved for a wide class of functions. A connection of uncertainty constants for periodic and non-periodic functions is extended to this class. A particular minimization problem for a non-periodic (Heisenberg) uncertainty constant is studied.",
keywords = "Uncertainty constant, Uncertainty principle , Periodic wavelet , Tight frame",
author = "E.A. Lebedeva",
year = "2017",
month = may,
doi = "10.1016/j.acha.2015.12.003",
language = "English",
volume = "42",
pages = "536--549",
journal = "Applied and Computational Harmonic Analysis",
issn = "1063-5203",
publisher = "Elsevier",
number = "3",

}

RIS

TY - JOUR

T1 - An inequality for a periodic uncertainty constant

AU - Lebedeva, E.A.

PY - 2017/5

Y1 - 2017/5

N2 - An inequality refining the lower bound for a periodic (Breitenberger) uncertainty constant is proved for a wide class of functions. A connection of uncertainty constants for periodic and non-periodic functions is extended to this class. A particular minimization problem for a non-periodic (Heisenberg) uncertainty constant is studied.

AB - An inequality refining the lower bound for a periodic (Breitenberger) uncertainty constant is proved for a wide class of functions. A connection of uncertainty constants for periodic and non-periodic functions is extended to this class. A particular minimization problem for a non-periodic (Heisenberg) uncertainty constant is studied.

KW - Uncertainty constant

KW - Uncertainty principle

KW - Periodic wavelet

KW - Tight frame

U2 - 10.1016/j.acha.2015.12.003

DO - 10.1016/j.acha.2015.12.003

M3 - Article

VL - 42

SP - 536

EP - 549

JO - Applied and Computational Harmonic Analysis

JF - Applied and Computational Harmonic Analysis

SN - 1063-5203

IS - 3

ER -

ID: 3990100