Standard

An Improved Multivariate Version of Kolmogorov’s Second Uniform Limit Theorem. / Götze, F.; Zaitsev, A. Yu; Zaporozhets, D.

в: Journal of Mathematical Sciences (United States), Том 258, № 6, 11.2021, стр. 782-792.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Götze, F, Zaitsev, AY & Zaporozhets, D 2021, 'An Improved Multivariate Version of Kolmogorov’s Second Uniform Limit Theorem', Journal of Mathematical Sciences (United States), Том. 258, № 6, стр. 782-792. https://doi.org/10.1007/s10958-021-05594-x

APA

Vancouver

Author

Götze, F. ; Zaitsev, A. Yu ; Zaporozhets, D. / An Improved Multivariate Version of Kolmogorov’s Second Uniform Limit Theorem. в: Journal of Mathematical Sciences (United States). 2021 ; Том 258, № 6. стр. 782-792.

BibTeX

@article{ca41c0f4138a449b9099a4dfc328d2f2,
title = "An Improved Multivariate Version of Kolmogorov{\textquoteright}s Second Uniform Limit Theorem",
abstract = "The aim of the present work is to show that the results obtained earlier on approximation of distributions of sums of independent summands by infinitely divisible laws may be transferred to estimation of the closeness of distributions on convex polyhedra.",
keywords = "суммы независимых случайных величин, выпуклые многогранники, аппроксимация, неравенства.",
author = "F. G{\"o}tze and Zaitsev, {A. Yu} and D. Zaporozhets",
note = "Publisher Copyright: {\textcopyright} 2021, Springer Science+Business Media, LLC, part of Springer Nature.",
year = "2021",
month = nov,
doi = "10.1007/s10958-021-05594-x",
language = "English",
volume = "258",
pages = "782--792",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "6",

}

RIS

TY - JOUR

T1 - An Improved Multivariate Version of Kolmogorov’s Second Uniform Limit Theorem

AU - Götze, F.

AU - Zaitsev, A. Yu

AU - Zaporozhets, D.

N1 - Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature.

PY - 2021/11

Y1 - 2021/11

N2 - The aim of the present work is to show that the results obtained earlier on approximation of distributions of sums of independent summands by infinitely divisible laws may be transferred to estimation of the closeness of distributions on convex polyhedra.

AB - The aim of the present work is to show that the results obtained earlier on approximation of distributions of sums of independent summands by infinitely divisible laws may be transferred to estimation of the closeness of distributions on convex polyhedra.

KW - суммы независимых случайных величин, выпуклые многогранники, аппроксимация, неравенства.

UR - http://www.scopus.com/inward/record.url?scp=85117173363&partnerID=8YFLogxK

U2 - 10.1007/s10958-021-05594-x

DO - 10.1007/s10958-021-05594-x

M3 - Article

AN - SCOPUS:85117173363

VL - 258

SP - 782

EP - 792

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 6

ER -

ID: 100911816