DOI

It is proved that a Hilbert function space on a set X with the Schwarz–Pick kernel (this is a wider class than the class of Hilbert spaces with the Nevanlinna–Pick kernel) generates a metric on the set X which is an analog of the hyperbolic metric in the unit disk. For a sequence satisfying an abstract Blaschke condition, it is proved that the associated infinite Blaschke product converges uniformly on any fixed bounded set and in the strong operator topology of the multiplier space. Bibliography: 8 titles.

Язык оригиналаанглийский
Страницы (с-по)497-505
Число страниц9
ЖурналJournal of Mathematical Sciences
Том229
Номер выпуска5
Дата раннего онлайн-доступа9 фев 2018
DOI
СостояниеОпубликовано - мар 2018

    Предметные области Scopus

  • Математика (все)

    Области исследований

  • hiperbolic metric, multipliers, reproducing kernel

ID: 15547343