Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Kraus representation of quantum information transfer channels is widely used in practice. We present examples of Kraus decompositions for channels that possess the covariance property with respect to the maximal commutative group of unitary operators. We show that in some problems (for example, the problem on the estimate of the minimal output entropy of the channel), the choice of a Kraus representation with nonminimal number of Kraus operators is relevant. We also present certain algebraic properties of noncommutative operator graphs generated by Kraus operators for the case of quantum channels that demonstrate the superactivation phenomenon.
Язык оригинала | английский |
---|---|
Страницы (с-по) | 109-116 |
Число страниц | 8 |
Журнал | Journal of Mathematical Sciences (United States) |
Том | 241 |
Номер выпуска | 2 |
DOI | |
Состояние | Опубликовано - 28 авг 2019 |
ID: 75034390