DOI

Kraus representation of quantum information transfer channels is widely used in practice. We present examples of Kraus decompositions for channels that possess the covariance property with respect to the maximal commutative group of unitary operators. We show that in some problems (for example, the problem on the estimate of the minimal output entropy of the channel), the choice of a Kraus representation with nonminimal number of Kraus operators is relevant. We also present certain algebraic properties of noncommutative operator graphs generated by Kraus operators for the case of quantum channels that demonstrate the superactivation phenomenon.

Язык оригиналаанглийский
Страницы (с-по)109-116
Число страниц8
ЖурналJournal of Mathematical Sciences (United States)
Том241
Номер выпуска2
DOI
СостояниеОпубликовано - 28 авг 2019

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 75034390