DOI

Algebraic Bayesian networks belong to the class of machine-learning probabilistic graphical models. One of the main tasks during researching machine learning models is the optimization of their time of work. This paper presents approaches to parallelizing algorithms for maintaining local consistency in algebraic Bayesian networks as one of the ways to optimize their time of work. An experiment provided to compare the time of parallel and nonparallel realizations of algorithms for maintaining local consistency.

Язык оригиналаанглийский
Название основной публикацииProceedings of the 4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019
РедакторыSergey Kovalev, Andrey Sukhanov, Valery Tarassov, Vaclav Snasel
ИздательSpringer Nature
Страницы214-222
Число страниц9
ISBN (печатное издание)9783030500962
DOI
СостояниеОпубликовано - 2020
Событие4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019 - Ostrava-Prague, Чехия
Продолжительность: 2 дек 20197 дек 2019

Серия публикаций

НазваниеAdvances in Intelligent Systems and Computing
Том1156 AISC
ISSN (печатное издание)2194-5357
ISSN (электронное издание)2194-5365

конференция

конференция4th International Scientific Conference on Intelligent Information Technologies for Industry, IITI 2019
Страна/TерриторияЧехия
ГородOstrava-Prague
Период2/12/197/12/19

    Предметные области Scopus

  • Системотехника
  • Компьютерные науки (все)

ID: 88231115