Standard

Algebraic and radical potential fields. Stability domains in coordinate and parametric space. / Утешев, Алексей Юрьевич.

8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics. ред. / Elena Kustova; Gennady Leonov; Nikita Morosov; Mikhail Yushkov. Том 1959 American Institute of Physics, 2018. 080021 (AIP Conference Proceedings; Том 1959).

Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференцийстатья в сборнике материалов конференциинаучнаяРецензирование

Harvard

Утешев, АЮ 2018, Algebraic and radical potential fields. Stability domains in coordinate and parametric space. в E Kustova, G Leonov, N Morosov & M Yushkov (ред.), 8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics. Том. 1959, 080021, AIP Conference Proceedings, Том. 1959, American Institute of Physics, VIII Поляховские чтения, Saint Petersburg, Российская Федерация, 29/01/18. https://doi.org/10.1063/1.5034738

APA

Утешев, А. Ю. (2018). Algebraic and radical potential fields. Stability domains in coordinate and parametric space. в E. Kustova, G. Leonov, N. Morosov, & M. Yushkov (Ред.), 8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics (Том 1959). [080021] (AIP Conference Proceedings; Том 1959). American Institute of Physics. https://doi.org/10.1063/1.5034738

Vancouver

Утешев АЮ. Algebraic and radical potential fields. Stability domains in coordinate and parametric space. в Kustova E, Leonov G, Morosov N, Yushkov M, Редакторы, 8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics. Том 1959. American Institute of Physics. 2018. 080021. (AIP Conference Proceedings). https://doi.org/10.1063/1.5034738

Author

Утешев, Алексей Юрьевич. / Algebraic and radical potential fields. Stability domains in coordinate and parametric space. 8th Polyakhov's Reading: Proceedings of the International Scientific Conference on Mechanics. Редактор / Elena Kustova ; Gennady Leonov ; Nikita Morosov ; Mikhail Yushkov. Том 1959 American Institute of Physics, 2018. (AIP Conference Proceedings).

BibTeX

@inproceedings{21e64aee2d2942de82dc183166037820,
title = "Algebraic and radical potential fields. Stability domains in coordinate and parametric space",
abstract = "A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ϵ ℝ n and parameters A ϵ ℝ m. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝ m such that for any parameter vector specialization A ϵ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain ⊂ ℝ n such that any point X ∗ ϵ could be made a stable equilibrium by a suitable specialization of the parameter vector A. ",
author = "Утешев, {Алексей Юрьевич}",
note = "Funding Information: This research was supported by the RFBR according to the project No 17-29-04288.; International Scientific Conference on Mechanics - Eighth Polyakhov's Reading : 8th Polyakhov's Reading ; Conference date: 29-01-2018 Through 02-02-2018",
year = "2018",
month = may,
day = "2",
doi = "https://doi.org/10.1063/1.5034738",
language = "English",
isbn = "9780735416604",
volume = "1959",
series = "AIP Conference Proceedings",
publisher = "American Institute of Physics",
editor = "Elena Kustova and Gennady Leonov and Nikita Morosov and Yushkov, { Mikhail }",
booktitle = "8th Polyakhov's Reading",
address = "United States",
url = "https://events.spbu.ru/events/polyakhov_readings, http://nanomat.spbu.ru/en/node/175, http://nanomat.spbu.ru/ru/node/192, http://spbu.ru/news-events/calendar/viii-polyahovskie-chteniya",

}

RIS

TY - GEN

T1 - Algebraic and radical potential fields. Stability domains in coordinate and parametric space

AU - Утешев, Алексей Юрьевич

N1 - Conference code: 8

PY - 2018/5/2

Y1 - 2018/5/2

N2 - A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ϵ ℝ n and parameters A ϵ ℝ m. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝ m such that for any parameter vector specialization A ϵ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain ⊂ ℝ n such that any point X ∗ ϵ could be made a stable equilibrium by a suitable specialization of the parameter vector A.

AB - A dynamical system d X/d t = F(X; A) is treated where F(X; A) is a polynomial (or some general type of radical contained) function in the vectors of state variables X ϵ ℝ n and parameters A ϵ ℝ m. We are looking for stability domains in both spaces, i.e. (a) domain ℙ ⊂ ℝ m such that for any parameter vector specialization A ϵ ℙ, there exists a stable equilibrium for the dynamical system, and (b) domain ⊂ ℝ n such that any point X ∗ ϵ could be made a stable equilibrium by a suitable specialization of the parameter vector A.

UR - http://www.scopus.com/inward/record.url?scp=85047213337&partnerID=8YFLogxK

UR - http://www.mendeley.com/research/algebraic-radical-potential-fields-stability-domains-coordinate-parametric-space

U2 - https://doi.org/10.1063/1.5034738

DO - https://doi.org/10.1063/1.5034738

M3 - Conference contribution

SN - 9780735416604

VL - 1959

T3 - AIP Conference Proceedings

BT - 8th Polyakhov's Reading

A2 - Kustova, Elena

A2 - Leonov, Gennady

A2 - Morosov, Nikita

A2 - Yushkov, Mikhail

PB - American Institute of Physics

T2 - International Scientific Conference on Mechanics - Eighth Polyakhov's Reading

Y2 - 29 January 2018 through 2 February 2018

ER -

ID: 25930999