Standard

Alexandrov spaces with maximal number of extremal points. / Lebedeva, Nina.

в: Geometry and Topology, Том 19, № 3, 21.05.2015, стр. 1493-1521.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Lebedeva, N 2015, 'Alexandrov spaces with maximal number of extremal points', Geometry and Topology, Том. 19, № 3, стр. 1493-1521. https://doi.org/10.2140/gt.2015.19.1493

APA

Vancouver

Author

Lebedeva, Nina. / Alexandrov spaces with maximal number of extremal points. в: Geometry and Topology. 2015 ; Том 19, № 3. стр. 1493-1521.

BibTeX

@article{62873e00a9df4af1a5a1cff62d8e1841,
title = "Alexandrov spaces with maximal number of extremal points",
abstract = "We show that any n–dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of ℝn by an action of a crystallographic group. We describe all such actions.",
author = "Nina Lebedeva",
year = "2015",
month = may,
day = "21",
doi = "10.2140/gt.2015.19.1493",
language = "English",
volume = "19",
pages = "1493--1521",
journal = "Geometry and Topology",
issn = "1465-3060",
publisher = "University of Warwick",
number = "3",

}

RIS

TY - JOUR

T1 - Alexandrov spaces with maximal number of extremal points

AU - Lebedeva, Nina

PY - 2015/5/21

Y1 - 2015/5/21

N2 - We show that any n–dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of ℝn by an action of a crystallographic group. We describe all such actions.

AB - We show that any n–dimensional nonnegatively curved Alexandrov space with the maximal possible number of extremal points is isometric to a quotient space of ℝn by an action of a crystallographic group. We describe all such actions.

UR - http://www.scopus.com/inward/record.url?scp=84930623614&partnerID=8YFLogxK

U2 - 10.2140/gt.2015.19.1493

DO - 10.2140/gt.2015.19.1493

M3 - Article

AN - SCOPUS:84930623614

VL - 19

SP - 1493

EP - 1521

JO - Geometry and Topology

JF - Geometry and Topology

SN - 1465-3060

IS - 3

ER -

ID: 10171669