Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Aggregation stability of monodisperse silica sol in NaCl and BaCl2 solutions. / Novikova, N. A.; Golikova, E. V.; Molodkina, L. M.; Bareeva, R. S.; Yanklovich, M. A.; Chernoberezhskii, Yu. M.
в: Colloid Journal, Том 77, № 3, 2015, стр. 312-320.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Aggregation stability of monodisperse silica sol in NaCl and BaCl2 solutions
AU - Novikova, N. A.
AU - Golikova, E. V.
AU - Molodkina, L. M.
AU - Bareeva, R. S.
AU - Yanklovich, M. A.
AU - Chernoberezhskii, Yu. M.
PY - 2015
Y1 - 2015
N2 - © 2015, Pleiades Publishing, Ltd.The aggregation kinetics of a monodisperse silica sol with an average particle size of 220 nm and particle number concentration n0 = 1010 cm−3 in aqueous solutions of NaCl and BaCl2 at pH 6.2 is studied with the help of photometry. The stability of diluted sols (n0 = 107 cm−3) in NaCl solutions is investigated by the direct method of flow ultramicroscopy. The results obtained are analyzed in terms of the theories of the Hogg-Yang barrierless coagulation and the Muller reversible coagulation. It is established that the slow coagulation of both concentrated and diluted sols proceeds via the barrierless mechanism in the secondary potential minimum.
AB - © 2015, Pleiades Publishing, Ltd.The aggregation kinetics of a monodisperse silica sol with an average particle size of 220 nm and particle number concentration n0 = 1010 cm−3 in aqueous solutions of NaCl and BaCl2 at pH 6.2 is studied with the help of photometry. The stability of diluted sols (n0 = 107 cm−3) in NaCl solutions is investigated by the direct method of flow ultramicroscopy. The results obtained are analyzed in terms of the theories of the Hogg-Yang barrierless coagulation and the Muller reversible coagulation. It is established that the slow coagulation of both concentrated and diluted sols proceeds via the barrierless mechanism in the secondary potential minimum.
U2 - 10.1134/S1061933X15030138
DO - 10.1134/S1061933X15030138
M3 - Article
VL - 77
SP - 312
EP - 320
JO - Colloid Journal
JF - Colloid Journal
SN - 1061-933X
IS - 3
ER -
ID: 3976231