Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Aggregation in a one-dimensional gas model with stable initial data. / Kuoza, L. V.; Lifshits, M. A.
в: Journal of Mathematical Sciences, Том 133, № 3, 01.03.2006, стр. 1298-1307.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Aggregation in a one-dimensional gas model with stable initial data
AU - Kuoza, L. V.
AU - Lifshits, M. A.
PY - 2006/3/1
Y1 - 2006/3/1
N2 - We consider a one-dimensional stochastic model of gravitationally interacting adhesive particles with distribution of initial velocities from the domain of normal attraction of a stable law. It is shown that a nonrandom critical time exists if the initial velocities are small enough. Namely, no macroscopic clusters appear before the critical time, while after the critical time, almost all of the mass is concentrated at a single cluster. The order of maximal cluster size for times prior to the critical one is found. If the initial velocities are large enough, then macroscopic clusters appear right after the beginning of system's life, but complete aggregation does not occur within a finite time.
AB - We consider a one-dimensional stochastic model of gravitationally interacting adhesive particles with distribution of initial velocities from the domain of normal attraction of a stable law. It is shown that a nonrandom critical time exists if the initial velocities are small enough. Namely, no macroscopic clusters appear before the critical time, while after the critical time, almost all of the mass is concentrated at a single cluster. The order of maximal cluster size for times prior to the critical one is found. If the initial velocities are large enough, then macroscopic clusters appear right after the beginning of system's life, but complete aggregation does not occur within a finite time.
UR - http://www.scopus.com/inward/record.url?scp=31344462662&partnerID=8YFLogxK
U2 - 10.1007/s10958-006-0039-4
DO - 10.1007/s10958-006-0039-4
M3 - Article
AN - SCOPUS:31344462662
VL - 133
SP - 1298
EP - 1307
JO - Journal of Mathematical Sciences
JF - Journal of Mathematical Sciences
SN - 1072-3374
IS - 3
ER -
ID: 37010129