Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Admissible majorants for model subspaces, and arguments of inner functions. / Baranov, A. D.; Havin, V. P.
в: Functional Analysis and its Applications, Том 40, № 4, 01.10.2006, стр. 249-263.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Admissible majorants for model subspaces, and arguments of inner functions
AU - Baranov, A. D.
AU - Havin, V. P.
PY - 2006/10/1
Y1 - 2006/10/1
N2 - Let Θ be an inner function in the upper half-plane ℂ+ and let K Θ denote the model subspace H 2 θ Θ H 2 of the Hardy space H 2 = H 2(ℂ+). A nonnegative function w on the real line is said to be an admissible majorant for K Θ if there exists a nonzero function f K Θ such that f ≤ w a.e. on ℝ. We prove a refined version of the parametrization formula for K Θ-admissible majorants and simplify the admissibility criterion (in terms of arg Θ) obtained in [8]. We show that, for every inner function Θ, there exist minimal K Θ-admissible majorants. The relationship between admissibility and some weighted approximation problems is considered.
AB - Let Θ be an inner function in the upper half-plane ℂ+ and let K Θ denote the model subspace H 2 θ Θ H 2 of the Hardy space H 2 = H 2(ℂ+). A nonnegative function w on the real line is said to be an admissible majorant for K Θ if there exists a nonzero function f K Θ such that f ≤ w a.e. on ℝ. We prove a refined version of the parametrization formula for K Θ-admissible majorants and simplify the admissibility criterion (in terms of arg Θ) obtained in [8]. We show that, for every inner function Θ, there exist minimal K Θ-admissible majorants. The relationship between admissibility and some weighted approximation problems is considered.
KW - Beurling-Malliavin theorem
KW - Entire function
KW - Hardy space
KW - Inner function
KW - Model subspace
UR - http://www.scopus.com/inward/record.url?scp=33748548506&partnerID=8YFLogxK
U2 - 10.1007/s10688-006-0042-z
DO - 10.1007/s10688-006-0042-z
M3 - Article
AN - SCOPUS:33748548506
VL - 40
SP - 249
EP - 263
JO - Functional Analysis and its Applications
JF - Functional Analysis and its Applications
SN - 0016-2663
IS - 4
ER -
ID: 51700815