Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
Additive technologies for ceramic MEMS sensors. / Vasiliev, A. A.; Sokolov, A. V.; Legin, A. V.; Samotaev, N. N.; Oblov, K. Yu; Kim, V. P.; Tkachev, S. V.; Gubin, S. P.; Potapov, G. N.; Kokhtina, Yu V.; Nisan, A. V.
в: Procedia Engineering, Том 120, 01.01.2015, стр. 1087-1090.Результаты исследований: Научные публикации в периодических изданиях › статья в журнале по материалам конференции › Рецензирование
}
TY - JOUR
T1 - Additive technologies for ceramic MEMS sensors
AU - Vasiliev, A. A.
AU - Sokolov, A. V.
AU - Legin, A. V.
AU - Samotaev, N. N.
AU - Oblov, K. Yu
AU - Kim, V. P.
AU - Tkachev, S. V.
AU - Gubin, S. P.
AU - Potapov, G. N.
AU - Kokhtina, Yu V.
AU - Nisan, A. V.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - The application of MEMS technology for the fabrication of MOX sensors with low power consumption becomes now a very important trend in gas sensor design. However, traditional silicon technology has some evident disadvantages, when applied in high-temperature devices produced in limited batch. We present our attempt to combine the advantages of ceramic MEMS technology (high working (600°C) and technological treatment (1000°C) temperature, chemical stability at high temperature) with the advantages of additive technologies for the fabrication of functional elements of gas sensor (heaters, sensing, and catalytic layers). We developed conductive silver, gold and platinum nanoparticle (10-30 nm) inks usable in ink and aerosol jet printers and demonstrated the possibility to fabricate narrow conductive lines of microheaters and electrodes of sensor (line width ∼ 35 μm). The combination of jet printing onto thin ceramic substrate with laser cutting enables the fabrication of advanced cantilever type sensors operating in pulsing heating mode.
AB - The application of MEMS technology for the fabrication of MOX sensors with low power consumption becomes now a very important trend in gas sensor design. However, traditional silicon technology has some evident disadvantages, when applied in high-temperature devices produced in limited batch. We present our attempt to combine the advantages of ceramic MEMS technology (high working (600°C) and technological treatment (1000°C) temperature, chemical stability at high temperature) with the advantages of additive technologies for the fabrication of functional elements of gas sensor (heaters, sensing, and catalytic layers). We developed conductive silver, gold and platinum nanoparticle (10-30 nm) inks usable in ink and aerosol jet printers and demonstrated the possibility to fabricate narrow conductive lines of microheaters and electrodes of sensor (line width ∼ 35 μm). The combination of jet printing onto thin ceramic substrate with laser cutting enables the fabrication of advanced cantilever type sensors operating in pulsing heating mode.
KW - Additive technology
KW - Aerosol jet printing
KW - Gas sensors
KW - Ink jet printing
KW - MEMS
UR - http://www.scopus.com/inward/record.url?scp=84985006605&partnerID=8YFLogxK
U2 - 10.1016/j.proeng.2015.08.775
DO - 10.1016/j.proeng.2015.08.775
M3 - Conference article
AN - SCOPUS:84985006605
VL - 120
SP - 1087
EP - 1090
JO - Procedia Engineering
JF - Procedia Engineering
SN - 1877-7058
T2 - 29th European Conference on Solid-State Transducers, EUROSENSORS 2015; Freiburg; Germany; 6 September 2015 through 9 September 2015.
Y2 - 6 September 2015 through 9 September 2015
ER -
ID: 36042394