Standard

Absolute continuity of the spectrum of two-dimensional Schrödinger operator with partially periodic coefficients. / Filonov, N.

в: St. Petersburg Mathematical Journal, Том 29, № 2, 01.2018, стр. 383-398.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Filonov, N. / Absolute continuity of the spectrum of two-dimensional Schrödinger operator with partially periodic coefficients. в: St. Petersburg Mathematical Journal. 2018 ; Том 29, № 2. стр. 383-398.

BibTeX

@article{5c99e8cc89024c75a7ae7006e201a27c,
title = "Absolute continuity of the spectrum of two-dimensional Schr{\"o}dinger operator with partially periodic coefficients",
abstract = "On the plane, the operator -div(g(x)∇·) + V (x) is considered. The absolute continuity of its spectrum is proved under the assumption that each coefficient is the sum of a ℤ2-periodic term and a summand that is periodic in one of the variables and decays superexponentially with respect to the other variable.",
keywords = "Absolute continuity of the spectrum, Partially periodic coefficients, Schr{\"o}dinger operator",
author = "N. Filonov",
year = "2018",
month = jan,
doi = "10.1090/spmj/1498",
language = "English",
volume = "29",
pages = "383--398",
journal = "St. Petersburg Mathematical Journal",
issn = "1061-0022",
publisher = "American Mathematical Society",
number = "2",

}

RIS

TY - JOUR

T1 - Absolute continuity of the spectrum of two-dimensional Schrödinger operator with partially periodic coefficients

AU - Filonov, N.

PY - 2018/1

Y1 - 2018/1

N2 - On the plane, the operator -div(g(x)∇·) + V (x) is considered. The absolute continuity of its spectrum is proved under the assumption that each coefficient is the sum of a ℤ2-periodic term and a summand that is periodic in one of the variables and decays superexponentially with respect to the other variable.

AB - On the plane, the operator -div(g(x)∇·) + V (x) is considered. The absolute continuity of its spectrum is proved under the assumption that each coefficient is the sum of a ℤ2-periodic term and a summand that is periodic in one of the variables and decays superexponentially with respect to the other variable.

KW - Absolute continuity of the spectrum

KW - Partially periodic coefficients

KW - Schrödinger operator

UR - http://www.scopus.com/inward/record.url?scp=85043523674&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=35540157

U2 - 10.1090/spmj/1498

DO - 10.1090/spmj/1498

M3 - Article

AN - SCOPUS:85043523674

VL - 29

SP - 383

EP - 398

JO - St. Petersburg Mathematical Journal

JF - St. Petersburg Mathematical Journal

SN - 1061-0022

IS - 2

ER -

ID: 50940773