Standard

Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder. / Kachkovskiy, I.; Filonov, N.

в: Journal of Mathematical Sciences , Том 178, № 3, 01.10.2011, стр. 274-281.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

APA

Vancouver

Author

Kachkovskiy, I. ; Filonov, N. / Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder. в: Journal of Mathematical Sciences . 2011 ; Том 178, № 3. стр. 274-281.

BibTeX

@article{d8185398ffda4f6e8fef887400c3f564,
title = "Absolute continuity of the spectrum of the periodic Schr{\"o}dinger operator in a layer and in a smooth cylinder",
abstract = "The Schr{\"o}dinger operator H = -Δ + V is considered in a layer or in a d-dimensional cylinder. The potential V is assumed to be periodic with respect to a lattice. The absolute continuity of H is established, provided that V ∈ Lp,loc, where p is a real number greater than d/2 in the case of a layer and p > max(d/2, d - 2) for a cylinder. Bibliography: 14 titles.",
author = "I. Kachkovskiy and N. Filonov",
year = "2011",
month = oct,
day = "1",
doi = "10.1007/s10958-011-0547-8",
language = "русский",
volume = "178",
pages = "274--281",
journal = "Journal of Mathematical Sciences",
issn = "1072-3374",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder

AU - Kachkovskiy, I.

AU - Filonov, N.

PY - 2011/10/1

Y1 - 2011/10/1

N2 - The Schrödinger operator H = -Δ + V is considered in a layer or in a d-dimensional cylinder. The potential V is assumed to be periodic with respect to a lattice. The absolute continuity of H is established, provided that V ∈ Lp,loc, where p is a real number greater than d/2 in the case of a layer and p > max(d/2, d - 2) for a cylinder. Bibliography: 14 titles.

AB - The Schrödinger operator H = -Δ + V is considered in a layer or in a d-dimensional cylinder. The potential V is assumed to be periodic with respect to a lattice. The absolute continuity of H is established, provided that V ∈ Lp,loc, where p is a real number greater than d/2 in the case of a layer and p > max(d/2, d - 2) for a cylinder. Bibliography: 14 titles.

UR - http://www.scopus.com/inward/record.url?scp=80053546769&partnerID=8YFLogxK

U2 - 10.1007/s10958-011-0547-8

DO - 10.1007/s10958-011-0547-8

M3 - статья

AN - SCOPUS:80053546769

VL - 178

SP - 274

EP - 281

JO - Journal of Mathematical Sciences

JF - Journal of Mathematical Sciences

SN - 1072-3374

IS - 3

ER -

ID: 51315562