One of the important tasks of interpolation is the good selection of interpolation nodes. As is well known, the roots of the Chebyshev polynomial are optimal ones for interpolation with algebraic polynomials on the interval [-1,1]. Nevertheless, there are still some difficulties in constructing the grid of nodes when the number of points tend to infinity. Here we offer the formula for constructing the interpolation nodes for a rapidly increasing function or decreasing function. The formula takes into account the local behavior of the function on the previous three grid nodes, and it is based on the interpolation by local quadratic polynomial splines. Particular attention is paid to the interpolation of functions on radial-ring grids.

Язык оригиналаанглийский
Страницы (с-по)340-351
Число страниц12
ЖурналWSEAS Transactions on Mathematics
Том17
СостояниеОпубликовано - 1 янв 2018

    Предметные области Scopus

  • Алгебра и теория чисел
  • Эндокринология, диабет и метаболизм
  • Теория вероятности и статистика
  • Дискретная математика и комбинаторика
  • Теория управления и исследование операций
  • Теория оптимизации
  • Вычислительная математика
  • Прикладная математика

ID: 38296439