Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
In the spectrum of the mixed boundary value problem for the Laplace operator in a finite, but long cylinder Ωℓ with curved ends, we detect a series of eigenvalues of the strange behavior as the length 2ℓ unlimitedly increases. In addition to usual hard-movable eigenvalues not leaving small neighborhoods of fixed points, we detect eigenvalues gliding down with a large speed along the real axis, but smoothly landing on the lower bound λ† = Λ1 of the continuous spectrum of the limit problem in the half-cylinder Π± obtained by elongating Ωℓ in one of two directions. We give a complete description of the low-frequency range of the spectrum and show that each point in (Λ1, Λ2) is a blinking eigenvalue. Above the second threshold Λ2 of the continuous spectrum of the problem in Π±, the behavior of eigenvalues of the problem in the waveguide Ωℓ as ℓ → + ∞ is chaotic and their asymptotics can be constructed only in particular cases.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 351-383 |
| Число страниц | 33 |
| Журнал | Journal of Mathematical Sciences (United States) |
| Том | 250 |
| Номер выпуска | 2 |
| DOI | |
| Состояние | Опубликовано - 1 окт 2020 |
ID: 71562264