Standard

A spectral Szegő theorem on the real line. / Bessonov, Roman; Denisov, Sergey.

в: Advances in Mathematics, Том 359, 106851, 07.01.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Bessonov, R & Denisov, S 2020, 'A spectral Szegő theorem on the real line', Advances in Mathematics, Том. 359, 106851. https://doi.org/10.1016/j.aim.2019.106851

APA

Bessonov, R., & Denisov, S. (2020). A spectral Szegő theorem on the real line. Advances in Mathematics, 359, [106851]. https://doi.org/10.1016/j.aim.2019.106851

Vancouver

Bessonov R, Denisov S. A spectral Szegő theorem on the real line. Advances in Mathematics. 2020 Янв. 7;359. 106851. https://doi.org/10.1016/j.aim.2019.106851

Author

Bessonov, Roman ; Denisov, Sergey. / A spectral Szegő theorem on the real line. в: Advances in Mathematics. 2020 ; Том 359.

BibTeX

@article{4ea015a51b2a4ffca0cfd68528f93684,
title = "A spectral Szeg{\H o} theorem on the real line",
abstract = "We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.",
keywords = "Canonical Hamiltonian system, Entropy, Inverse problem, Muckenhoupt class, String equation, Szeg{\H o} class, SUM-RULES, Szego class",
author = "Roman Bessonov and Sergey Denisov",
year = "2020",
month = jan,
day = "7",
doi = "10.1016/j.aim.2019.106851",
language = "English",
volume = "359",
journal = "Advances in Mathematics",
issn = "0001-8708",
publisher = "Elsevier",

}

RIS

TY - JOUR

T1 - A spectral Szegő theorem on the real line

AU - Bessonov, Roman

AU - Denisov, Sergey

PY - 2020/1/7

Y1 - 2020/1/7

N2 - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.

AB - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.

KW - Canonical Hamiltonian system

KW - Entropy

KW - Inverse problem

KW - Muckenhoupt class

KW - String equation

KW - Szegő class

KW - SUM-RULES

KW - Szego class

UR - http://www.scopus.com/inward/record.url?scp=85073968108&partnerID=8YFLogxK

U2 - 10.1016/j.aim.2019.106851

DO - 10.1016/j.aim.2019.106851

M3 - Article

AN - SCOPUS:85073968108

VL - 359

JO - Advances in Mathematics

JF - Advances in Mathematics

SN - 0001-8708

M1 - 106851

ER -

ID: 49793258