Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A spectral Szegő theorem on the real line. / Bessonov, Roman; Denisov, Sergey.
в: Advances in Mathematics, Том 359, 106851, 07.01.2020.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - A spectral Szegő theorem on the real line
AU - Bessonov, Roman
AU - Denisov, Sergey
PY - 2020/1/7
Y1 - 2020/1/7
N2 - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.
AB - We characterize even measures μ=wdx+μs on the real line R with finite entropy integral [Formula presented] in terms of 2×2 Hamiltonians generated by μ in the sense of the inverse spectral theory. As a corollary, we obtain criterion for spectral measure of Krein string to have converging logarithmic integral.
KW - Canonical Hamiltonian system
KW - Entropy
KW - Inverse problem
KW - Muckenhoupt class
KW - String equation
KW - Szegő class
KW - SUM-RULES
KW - Szego class
UR - http://www.scopus.com/inward/record.url?scp=85073968108&partnerID=8YFLogxK
U2 - 10.1016/j.aim.2019.106851
DO - 10.1016/j.aim.2019.106851
M3 - Article
AN - SCOPUS:85073968108
VL - 359
JO - Advances in Mathematics
JF - Advances in Mathematics
SN - 0001-8708
M1 - 106851
ER -
ID: 49793258