DOI

Systems of ordinary differential equations partitioned on base of their right-hand side dependencies on the unknown functions are considered. Explicit Runge–Kutta methods for such systems are presented. These methods require fewer right-hand side computations (stages) than classic single-scheme Runge–Kutta methods to provide the same order of convergence. The full system of order conditions is presented. The system is reduced to several independent linear systems with help of the simplifying relations. The algorithm of finding the solution of the order conditions system with six free parameters is given. A particular choice of free parameters and the corresponding computational scheme are presented. The advantage of the presented methods is shown by the numerical comparison to the known classic six order method by J. C. Butcher.

Язык оригиналаанглийский
Название основной публикацииInternational Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2020
РедакторыT.E. Simos, T.E. Simos, T.E. Simos, T.E. Simos, Ch. Tsitouras
ИздательAmerican Institute of Physics
ISBN (электронное издание)9780735441828
ISBN (печатное издание)9780735441828
DOI
СостояниеОпубликовано - 6 апр 2022
СобытиеInternational Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020 - Rhodes, Греция
Продолжительность: 17 сен 202023 сен 2020

Серия публикаций

НазваниеAIP Conference Proceedings
Том2425
ISSN (печатное издание)0094-243X
ISSN (электронное издание)1551-7616

конференция

конференцияInternational Conference on Numerical Analysis and Applied Mathematics 2020, ICNAAM 2020
Страна/TерриторияГреция
ГородRhodes
Период17/09/2023/09/20

    Предметные области Scopus

  • Физика и астрономия (все)

ID: 95014073