DOI

Using the dimension reduction procedure, a one-dimensional model of a periodic blood flow in the artery through a small hole in a thin elastic wall to a spindle-shaped hematoma, is constructed. This model is described by a system of two parabolic and one hyperbolic equations provided with mixed boundary and periodicity conditions. The blood exchange between the artery and the hematoma is expressed by the Kirchhoff transmission conditions. Despite the simplicity, the constructed model allows us to describe the damping of a pulsating blood flow by the hematoma and to determine the condition of its growth. In medicine, the biological object considered is called a false aneurysm. Bibliography: 15 titles.

Язык оригиналаанглийский
Страницы (с-по)287-301
Число страниц15
ЖурналJournal of Mathematical Sciences (United States)
Том214
Номер выпуска3
Дата раннего онлайн-доступа11 мар 2016
DOI
СостояниеОпубликовано - 1 апр 2016

    Предметные области Scopus

  • Теория вероятности и статистика
  • Математика (все)
  • Прикладная математика

ID: 40974417