Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An analog of the Jackson–Chernykh inequality for spline approximations in the space L2( ℝ) is established in this work. For r ℕ and σ > 0, we denote by Aσr( f )2 the best approximation of a function f ∈ L2(ℝ ) by the space of splines of degree r of minimal defect with knots , j ∏/σ , and by ω( f, δ)2 the first-order modulus of continuity of f in L2( ℝ). The main result of our work is as follows. For any f ∈ L2( ℝ),(formula presented) where θr = 1/√1-εr 2 and εr is the positive root of the equation(formula presented) The constant 1/√2 cannot be reduced on the whole class L2(ℝ ) even by increasing the step of the modulus of continuity.
| Язык оригинала | английский |
|---|---|
| Страницы (с-по) | 10-19 |
| Число страниц | 10 |
| Журнал | Vestnik St. Petersburg University: Mathematics |
| Том | 53 |
| Номер выпуска | 1 |
| DOI | |
| Состояние | Опубликовано - 1 янв 2020 |
ID: 53406121