Результаты исследований: Публикации в книгах, отчётах, сборниках, трудах конференций › статья в сборнике материалов конференции › научная › Рецензирование
Large-scale optimization plays important role in many control and learning problems. Sequential subspace optimization is a novel approach particularly suitable for large-scale optimization problems. It is based on sequential reduction of the initial optimization problem to optimization problems in a low-dimensional space. In this paper we consider a problem of multidimensional convex real-valued function optimization. In a framework of sequential subspace optimization we develop a new method based on a combination of quasi-Newton and conjugate gradient method steps. We provide its formal justification and derive several of its theoretical properties. In particular, for quadratic programming problem we prove linear convergence in a finite number of steps. We demonstrate superiority of the proposed algorithm over common state of the art methods by carrying out comparative analysis on both modelled and real-world optimization problems.
Язык оригинала | английский |
---|---|
Название основной публикации | American Control Conference, ACC 2020 |
Издатель | Institute of Electrical and Electronics Engineers Inc. |
Страницы | 3627-3632 |
Число страниц | 6 |
ISBN (электронное издание) | 9781538682661 |
ISBN (печатное издание) | 9781538682661 |
DOI | |
Состояние | Опубликовано - июл 2020 |
Событие | 2020 American Control Conference, ACC 2020 - Denver, Соединенные Штаты Америки Продолжительность: 1 июл 2020 → 3 июл 2020 |
Название | Proceedings of the American Control Conference |
---|---|
ISSN (печатное издание) | 0743-1619 |
конференция | 2020 American Control Conference, ACC 2020 |
---|---|
Страна/Tерритория | Соединенные Штаты Америки |
Город | Denver |
Период | 1/07/20 → 3/07/20 |
ID: 62023361