A framework for system analysis and design is described based on nonlinear system models and nonperiodic signals generated by nonlinear systems. The proposed approach to analysis of nonlinear systems is based on excitability index - a nonlinear counterpart of magnitude frequency response of linear system. It can be used for stability analysis of fully nonlinear cascade systems similarly to absolute stability analysis of Lur's systems. Speed-Gradient algorithms of creating feedback resonance in nonlinear multi-DOF oscillators are described. For strictly dissipative systems bounds of energy and excitability change by feedback are established.

Язык оригиналаанглийский
Страницы (с-по)4397-4402
Число страниц6
ЖурналProceedings of the IEEE Conference on Decision and Control
Том5
СостояниеОпубликовано - 2000
Событие39th IEEE Confernce on Decision and Control - Sydney, NSW, Австралия
Продолжительность: 12 дек 200015 дек 2000

    Предметные области Scopus

  • Системотехника
  • Моделирование и симуляция
  • Теория оптимизации

ID: 88361250